Therapeutic Implications of Biomolecular Corona on Lipid Nanoparticle-Based Gene Delivery Systems.

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-07-09 eCollection Date: 2025-09-01 DOI:10.1002/smsc.202500206
Antonietta Greco, Claudia Corbo
{"title":"Therapeutic Implications of Biomolecular Corona on Lipid Nanoparticle-Based Gene Delivery Systems.","authors":"Antonietta Greco, Claudia Corbo","doi":"10.1002/smsc.202500206","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are widely used in drug delivery due to their low toxicity, excellent biocompatibility, and ability to facilitate endosomal escape. A critical factor influencing the in vivo behavior of LNPs is the formation of a biomolecular corona (BC) on their surface. This layer of biomolecules affects key biological processes such as targeting, absorption, distribution, metabolism, and clearance. Gaining a deeper understanding of the BC formation mechanisms is essential for predicting and optimizing the therapeutic efficacy of LNPs. In this perspective, we present recent advances in the characterization, isolation, and functional implications of the BC. We explore how BC formation affects the stability, biodistribution, and targeting capacity of LNPs, and discuss how harnessing this phenomenon could offer a powerful strategy to improve the precision and effectiveness of targeted drug delivery.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 9","pages":"2500206"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid nanoparticles (LNPs) are widely used in drug delivery due to their low toxicity, excellent biocompatibility, and ability to facilitate endosomal escape. A critical factor influencing the in vivo behavior of LNPs is the formation of a biomolecular corona (BC) on their surface. This layer of biomolecules affects key biological processes such as targeting, absorption, distribution, metabolism, and clearance. Gaining a deeper understanding of the BC formation mechanisms is essential for predicting and optimizing the therapeutic efficacy of LNPs. In this perspective, we present recent advances in the characterization, isolation, and functional implications of the BC. We explore how BC formation affects the stability, biodistribution, and targeting capacity of LNPs, and discuss how harnessing this phenomenon could offer a powerful strategy to improve the precision and effectiveness of targeted drug delivery.

Abstract Image

Abstract Image

Abstract Image

生物分子电晕对基于脂质纳米颗粒的基因传递系统的治疗意义。
脂质纳米颗粒(LNPs)由于其低毒性、优异的生物相容性和促进内体逃逸的能力而广泛应用于药物递送。影响LNPs在体内行为的一个关键因素是其表面形成生物分子电晕(BC)。这层生物分子影响关键的生物过程,如靶向、吸收、分布、代谢和清除。深入了解BC形成机制对于预测和优化LNPs的治疗效果至关重要。从这个角度来看,我们介绍了BC的表征、分离和功能意义的最新进展。我们探讨了BC的形成如何影响LNPs的稳定性、生物分布和靶向能力,并讨论了如何利用这一现象来提高靶向给药的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信