Perovskite Quantum Dot-Enhanced Silicon Photodetectors for High-Performance Infrared Sensing.

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-07-03 eCollection Date: 2025-09-01 DOI:10.1002/smsc.202500170
Dohun Baek, Eunseo Nam, Su Min Park, Jeongbeom Cha, Haedam Jin, Hyeongyu Kim, Jihun Lee, Kihyun Kim, Min Kim
{"title":"Perovskite Quantum Dot-Enhanced Silicon Photodetectors for High-Performance Infrared Sensing.","authors":"Dohun Baek, Eunseo Nam, Su Min Park, Jeongbeom Cha, Haedam Jin, Hyeongyu Kim, Jihun Lee, Kihyun Kim, Min Kim","doi":"10.1002/smsc.202500170","DOIUrl":null,"url":null,"abstract":"<p><p>Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated. The scallop nanowire design creates resonant light trapping, while the PQD layer enhances charge generation and transfer, especially at wavelengths above 1000 nm. Notably, the tin-substituted PQDs improve photodetection at 1100 nm and achieve a faster response time (≈6 ms) compared with bare silicon devices. This work establishes a viable route toward high-performance infrared sensing using perovskite-functionalized silicon architectures, offering promising applications in autonomous vision, biomedical imaging, and industrial diagnostics.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 9","pages":"2500170"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412522/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated. The scallop nanowire design creates resonant light trapping, while the PQD layer enhances charge generation and transfer, especially at wavelengths above 1000 nm. Notably, the tin-substituted PQDs improve photodetection at 1100 nm and achieve a faster response time (≈6 ms) compared with bare silicon devices. This work establishes a viable route toward high-performance infrared sensing using perovskite-functionalized silicon architectures, offering promising applications in autonomous vision, biomedical imaging, and industrial diagnostics.

Abstract Image

Abstract Image

Abstract Image

用于高性能红外传感的钙钛矿量子点增强硅光电探测器。
红外光电探测器对于自动驾驶至关重要,可以在具有挑战性的照明条件下提供可靠的目标检测。然而,传统的硅基器件在1100nm以上的响应性受到限制。在这里,一个扇贝结构的硅光电探测器集成了锡取代钙钛矿量子点(PQDs),有效地扩展了红外探测。扇贝纳米线设计可以产生共振光捕获,而PQD层可以增强电荷的产生和转移,特别是在波长大于1000 nm的情况下。值得注意的是,与裸硅器件相比,锡取代pqd改善了1100 nm的光探测,并且实现了更快的响应时间(≈6 ms)。这项工作为使用钙钛矿功能化硅架构实现高性能红外传感建立了一条可行的途径,在自主视觉、生物医学成像和工业诊断方面提供了有前途的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信