Functionalized Nanoporous Biocarbon with High Specific Surface Area Derived from Waste Hardwood Chips for CO2 Capture and Supercapacitors.

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-06-24 eCollection Date: 2025-09-01 DOI:10.1002/smsc.202500174
Jibi Kunjumon, Ajanya Maria Ruban, Harleen Kaur, Davidson Sajan, Sanje Mahasivam, Vipul Bansal, Gurwinder Singh, Ajayan Vinu
{"title":"Functionalized Nanoporous Biocarbon with High Specific Surface Area Derived from Waste Hardwood Chips for CO<sub>2</sub> Capture and Supercapacitors.","authors":"Jibi Kunjumon, Ajanya Maria Ruban, Harleen Kaur, Davidson Sajan, Sanje Mahasivam, Vipul Bansal, Gurwinder Singh, Ajayan Vinu","doi":"10.1002/smsc.202500174","DOIUrl":null,"url":null,"abstract":"<p><p>Waste biomass has aroused increasing interest in the production of low-cost materials for CO<sub>2</sub> adsorption and supercapacitors. One of the primary facets in this regard is to develop nanoporous carbons with controlled porosity and high surface area. Herein, waste wood chips are used to synthesize nanoporous biocarbons via a solid-state KOH-based chemical activation. The synthesized materials presented high surface area (3686.10 m<sup>2</sup> g<sup>-1</sup>), large pore volume (1.88 cm<sup>3</sup> g<sup>-1</sup>), and tunable pore sizes. As a porous solid adsorbent, the optimized material adsorbs 5.59 mmoles of CO<sub>2</sub> per gram at 0 °C/1 bar, which is elevated to 37.47 mmoles g<sup>-1</sup> at 0 °C/30 bar along with a good CO<sub>2</sub>/N<sub>2</sub> selectivity within a range ≈25-35 and also displays high recyclability of >99%. Electrochemically, in a three-electrode setup, a high specific capacitance of 261.5 F g<sup>-1</sup>/0.5 A g<sup>-1</sup> is observed. For a two-electrode setup, a reasonable specific capacitance of 91.67 F g<sup>-1</sup>/0.5 A g<sup>-1</sup>, energy and power densities (18.33 Wh kg<sup>-1</sup> and 2274.94 kW kg<sup>-1</sup>), and 87.5% capacity retention after 10 000 cycles are obtained. A low-cost and noncomplicated synthesis and high performance of materials for CO<sub>2</sub> adsorption and supercapacitors make a strong case for their high promise in these fields.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 9","pages":"2500174"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Waste biomass has aroused increasing interest in the production of low-cost materials for CO2 adsorption and supercapacitors. One of the primary facets in this regard is to develop nanoporous carbons with controlled porosity and high surface area. Herein, waste wood chips are used to synthesize nanoporous biocarbons via a solid-state KOH-based chemical activation. The synthesized materials presented high surface area (3686.10 m2 g-1), large pore volume (1.88 cm3 g-1), and tunable pore sizes. As a porous solid adsorbent, the optimized material adsorbs 5.59 mmoles of CO2 per gram at 0 °C/1 bar, which is elevated to 37.47 mmoles g-1 at 0 °C/30 bar along with a good CO2/N2 selectivity within a range ≈25-35 and also displays high recyclability of >99%. Electrochemically, in a three-electrode setup, a high specific capacitance of 261.5 F g-1/0.5 A g-1 is observed. For a two-electrode setup, a reasonable specific capacitance of 91.67 F g-1/0.5 A g-1, energy and power densities (18.33 Wh kg-1 and 2274.94 kW kg-1), and 87.5% capacity retention after 10 000 cycles are obtained. A low-cost and noncomplicated synthesis and high performance of materials for CO2 adsorption and supercapacitors make a strong case for their high promise in these fields.

Abstract Image

Abstract Image

Abstract Image

高比表面积的功能化纳米多孔生物碳从废硬木屑中提取,用于二氧化碳捕获和超级电容器。
废弃生物质引起了人们对生产低成本二氧化碳吸附材料和超级电容器的兴趣。这方面的一个主要方面是开发具有可控孔隙度和高表面积的纳米多孔碳。本研究利用废木屑通过固体氢氧化钾化学活化法合成纳米多孔生物碳。合成的材料具有高表面积(3686.10 m2 g-1)、大孔体积(1.88 cm3 g-1)、孔径可调等特点。作为一种多孔固体吸附剂,优化后的材料在0°C/1 bar条件下的CO2吸附剂浓度为5.59 mmol / g,在0°C/30 bar条件下的CO2吸附剂浓度可提高到37.47 mmol / g,具有良好的CO2/N2选择性(≈25-35),并且具有bbb99 %的高可回收性。电化学上,在三电极设置中,观察到261.5 F g-1/0.5 a g-1的高比电容。对于双电极设置,获得了91.67 F -1/0.5 a g-1的合理比电容,能量和功率密度(18.33 Wh kg-1和2274.94 kW kg-1),以及10,000次循环后的87.5%的容量保持率。低成本、简单的合成和高性能的二氧化碳吸附材料和超级电容器在这些领域具有很高的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信