Thi-My-Trang Luong, Xuan Lam Bui, Chii-Ruey Tzeng, Nguyen Quoc Khanh Le
{"title":"Interpretable Machine Learning for Proteomics-Based Subtyping and Tumor Mutational Burden Prediction in Endometrial Cancer.","authors":"Thi-My-Trang Luong, Xuan Lam Bui, Chii-Ruey Tzeng, Nguyen Quoc Khanh Le","doi":"10.1002/prca.70024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endometrial carcinoma (EC) represents a significant clinical challenge due to its pronounced molecular heterogeneity, directly influencing prognosis and therapeutic responses. Accurate classification of molecular subtypes (CNV-high, CNV-low, MSI-H, POLE) and precise tumor mutational burden (TMB) assessment is crucial for guiding personalized therapeutic interventions. Integrating proteomics data with advanced machine learning (ML) techniques offers a promising strategy for achieving precise, clinically actionable classification and biomarker discovery in EC.</p><p><strong>Materials and methods: </strong>Using proteomic data from 95 EC patients (83 endometrioid, 12 serous), sourced from the Clinical Proteomic Tumor Analysis Consortium (CPTAC), we developed an ML pipeline integrating proteomic feature selection (Lasso-penalized logistic regression), classification modeling, and interpretability analysis. The dataset was divided into training (70%) and test (30%) sets, with synthetic minority oversampling (SMOTE) applied to address the class imbalance. Logistic regression models were trained for molecular subtypes classification, and the TMB prediction model performance was evaluated using accuracy, AUC, precision, recall, and F1-score. Model interpretability was enhanced using explainable AI (XAI) techniques: SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME).</p><p><strong>Results: </strong>Feature selection reduced the proteomic dataset from 11,000 to eight key proteins. The proteomics-based ML model demonstrated robust predictive performance, accurately classifying EC molecular subtypes (accuracy: 82.8%; AUC: 0.990) and distinguishing high (≥10 mutations/Mb) versus low TMB (<10 mutations/Mb) cases (accuracy: 89.7%; AUC: 0.984). SHAP analysis highlighted clinically recognized biomarkers (MLH1, PMS2, STAT1) and identified novel protein candidates (MTHFD2, MAST4, RPL22L1, MX2, SEC16A). LIME analysis provided individualized prediction interpretations, clarifying each protein biomarker's influence on model decisions.</p><p><strong>Conclusion: </strong>Our proteomics-driven ML approach demonstrates high accuracy and interpretability in EC subtype classification and TMB prediction. By identifying validated and novel biomarkers, this strategy provides essential biological insights and a strong foundation for the future development of non-invasive diagnostics, personalized treatments, and precision medicine in EC.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e70024"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.70024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Endometrial carcinoma (EC) represents a significant clinical challenge due to its pronounced molecular heterogeneity, directly influencing prognosis and therapeutic responses. Accurate classification of molecular subtypes (CNV-high, CNV-low, MSI-H, POLE) and precise tumor mutational burden (TMB) assessment is crucial for guiding personalized therapeutic interventions. Integrating proteomics data with advanced machine learning (ML) techniques offers a promising strategy for achieving precise, clinically actionable classification and biomarker discovery in EC.
Materials and methods: Using proteomic data from 95 EC patients (83 endometrioid, 12 serous), sourced from the Clinical Proteomic Tumor Analysis Consortium (CPTAC), we developed an ML pipeline integrating proteomic feature selection (Lasso-penalized logistic regression), classification modeling, and interpretability analysis. The dataset was divided into training (70%) and test (30%) sets, with synthetic minority oversampling (SMOTE) applied to address the class imbalance. Logistic regression models were trained for molecular subtypes classification, and the TMB prediction model performance was evaluated using accuracy, AUC, precision, recall, and F1-score. Model interpretability was enhanced using explainable AI (XAI) techniques: SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME).
Results: Feature selection reduced the proteomic dataset from 11,000 to eight key proteins. The proteomics-based ML model demonstrated robust predictive performance, accurately classifying EC molecular subtypes (accuracy: 82.8%; AUC: 0.990) and distinguishing high (≥10 mutations/Mb) versus low TMB (<10 mutations/Mb) cases (accuracy: 89.7%; AUC: 0.984). SHAP analysis highlighted clinically recognized biomarkers (MLH1, PMS2, STAT1) and identified novel protein candidates (MTHFD2, MAST4, RPL22L1, MX2, SEC16A). LIME analysis provided individualized prediction interpretations, clarifying each protein biomarker's influence on model decisions.
Conclusion: Our proteomics-driven ML approach demonstrates high accuracy and interpretability in EC subtype classification and TMB prediction. By identifying validated and novel biomarkers, this strategy provides essential biological insights and a strong foundation for the future development of non-invasive diagnostics, personalized treatments, and precision medicine in EC.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.