{"title":"A series of precise and controllable base editors with split-TadA-8e.","authors":"Jinxin Wang, Qingjing He, Yuqiang Zeng, Youming Wu, Mufeng Wang, Wenqing Xu, Zhizhi Wang, Xiaohui Zhang","doi":"10.1016/j.omtn.2025.102672","DOIUrl":null,"url":null,"abstract":"<p><p>Adenine base editors (ABEs) enable efficient A-to-G base conversions in genomic DNA, serving as powerful tools for basic research and clinical disease treatment. TadA-8e with high processive and compatibility makes ABE8e to be the most widely used adenine base editor and has also facilitated the creation of more elegant base editors based on TadA-8e fusion, such as AYBE and eA&C-BEmax. However, ABE8e has more off-target events including DNA off-target and RNA off-target, which raises safety concerns for precision gene editing. Here, we split the TadA-8e of ABE8e (sABE8e) to enable controlled adenine base editing through rapamycin-induced dimerization between FRB and FKBP12. sABE8e has comparable on-target adenine editing activity to ABE8e while maintaining reduced DNA and RNA off-target effects. Harnessing this site of split TadA-8e, we have also developed controllable AYBE (sAYBE) and eA&C-BEmax (seA&C-BEmax), which both offer similar or slightly low base editing efficiency with decreased off-targets compared to AYBE or eA&C-BEmax. These precise and controllable base editing tools will advance the future application of base editors in basic research and clinical disease treatment.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 3","pages":"102672"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102672","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adenine base editors (ABEs) enable efficient A-to-G base conversions in genomic DNA, serving as powerful tools for basic research and clinical disease treatment. TadA-8e with high processive and compatibility makes ABE8e to be the most widely used adenine base editor and has also facilitated the creation of more elegant base editors based on TadA-8e fusion, such as AYBE and eA&C-BEmax. However, ABE8e has more off-target events including DNA off-target and RNA off-target, which raises safety concerns for precision gene editing. Here, we split the TadA-8e of ABE8e (sABE8e) to enable controlled adenine base editing through rapamycin-induced dimerization between FRB and FKBP12. sABE8e has comparable on-target adenine editing activity to ABE8e while maintaining reduced DNA and RNA off-target effects. Harnessing this site of split TadA-8e, we have also developed controllable AYBE (sAYBE) and eA&C-BEmax (seA&C-BEmax), which both offer similar or slightly low base editing efficiency with decreased off-targets compared to AYBE or eA&C-BEmax. These precise and controllable base editing tools will advance the future application of base editors in basic research and clinical disease treatment.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.