{"title":"[Electroacupuncture at Zusanli improves blood lipid disorders in hyperlipidemic mice by improving gut microbiota structure].","authors":"Chuyu Deng, Xueying Wang, Lixiang Gan, Dayu Wang, Xiaoyan Zheng, Chunzhi Tang","doi":"10.12122/j.issn.1673-4254.2025.08.08","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the therapeutic effect of electroacupuncture (EA) at Zusanli (ST36) acupoint on hyperlipidemia in mice and explore the underlying mechanisms.</p><p><strong>Methods: </strong>Thirty C57BL/6J mice were equally randomized into normal diet group, high-fat diet (HFD) group, and EA group. The changes in blood lipids and serum malondialdehyde (MDA) content of the mice were evaluated, and histopathological changes and lipid accumulation in the liver were observed using Oil red O staining (ORO). The expressions of NLRP3, TLR4, and IL-1β proteins in the colon tissues were detected with Western blotting, and gut microbiota changes were analyzed using 16S rDNA sequencing.</p><p><strong>Results: </strong>In mice with HFD feeding, 16 weeks of EA treatment significantly lowered body weight and serum TC, TG, LDL-C and MDA levels, obviously reduced lipid accumulation in the liver, and ameliorated HFD-induced elevations of protein expressions of NLRP3, TLR4, and IL-1β. 16S rRNA sequencing revealed that EA significantly altered gut microbiota composition, and increased the diversity and relative abundance of beneficial bacterial groups such as <i>Muribaculaceae</i> and <i>Lachnospiraceae</i> NK4A136_group.</p><p><strong>Conclusions: </strong>Electroacupuncture at ST36 alleviates blood lipid disorders in hyperlipidemic mice possibly by improving intestinal microbiota structure, promoting degradation of high-caloric carbohydrates, cholesterol lipid metabolism and intestinal mucosa repair, and reducing toxin leakage, lipid peroxides, and liver fat deposition.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 8","pages":"1633-1642"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415585/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.08.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate the therapeutic effect of electroacupuncture (EA) at Zusanli (ST36) acupoint on hyperlipidemia in mice and explore the underlying mechanisms.
Methods: Thirty C57BL/6J mice were equally randomized into normal diet group, high-fat diet (HFD) group, and EA group. The changes in blood lipids and serum malondialdehyde (MDA) content of the mice were evaluated, and histopathological changes and lipid accumulation in the liver were observed using Oil red O staining (ORO). The expressions of NLRP3, TLR4, and IL-1β proteins in the colon tissues were detected with Western blotting, and gut microbiota changes were analyzed using 16S rDNA sequencing.
Results: In mice with HFD feeding, 16 weeks of EA treatment significantly lowered body weight and serum TC, TG, LDL-C and MDA levels, obviously reduced lipid accumulation in the liver, and ameliorated HFD-induced elevations of protein expressions of NLRP3, TLR4, and IL-1β. 16S rRNA sequencing revealed that EA significantly altered gut microbiota composition, and increased the diversity and relative abundance of beneficial bacterial groups such as Muribaculaceae and Lachnospiraceae NK4A136_group.
Conclusions: Electroacupuncture at ST36 alleviates blood lipid disorders in hyperlipidemic mice possibly by improving intestinal microbiota structure, promoting degradation of high-caloric carbohydrates, cholesterol lipid metabolism and intestinal mucosa repair, and reducing toxin leakage, lipid peroxides, and liver fat deposition.