{"title":"Challenges and limitations of molecular resolution fluorescence imaging.","authors":"Dominic A Helmerich, Markus Sauer","doi":"10.1088/2050-6120/ae042b","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution microscopy (SRM) has revolutionized fluorescence imaging enabling insights into the molecular organization of cells that were previously unconceivable. Latest developments now allow the visualization of individual molecules with nanometer precision and imaging with molecular resolution. However, translating these achievements to imaging under physiological conditions in cells remains challenging. The higher the spatial resolution is pushed by the development of improved SRM methods the more challenging the problems we are confronted when aiming to use them for sub-10 nm fluorescence imaging in cells. It turns out that most developed SRM methods that demonstrate nanometer resolution cannot be directly implemented for molecular resolution imaging in cells. Particularly, fluorescence labeling, i.e. high-density covalent labeling of the molecules of interest with fluorophores with minimal linkage error represents currently a nearly insurmountable obstacle. In addition, even if high labeling densities can be realized it has to be considered that fluorophores can interact via different energy pathways and thus impede super-resolution imaging in the sub-10 nm range. Here, we describe the boundaries, discuss the challenges we must accept and show strategies to circumvent them and achieve true molecular resolution fluorescence imaging under physiological conditions in cells.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Applications in Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1088/2050-6120/ae042b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Super-resolution microscopy (SRM) has revolutionized fluorescence imaging enabling insights into the molecular organization of cells that were previously unconceivable. Latest developments now allow the visualization of individual molecules with nanometer precision and imaging with molecular resolution. However, translating these achievements to imaging under physiological conditions in cells remains challenging. The higher the spatial resolution is pushed by the development of improved SRM methods the more challenging the problems we are confronted when aiming to use them for sub-10 nm fluorescence imaging in cells. It turns out that most developed SRM methods that demonstrate nanometer resolution cannot be directly implemented for molecular resolution imaging in cells. Particularly, fluorescence labeling, i.e. high-density covalent labeling of the molecules of interest with fluorophores with minimal linkage error represents currently a nearly insurmountable obstacle. In addition, even if high labeling densities can be realized it has to be considered that fluorophores can interact via different energy pathways and thus impede super-resolution imaging in the sub-10 nm range. Here, we describe the boundaries, discuss the challenges we must accept and show strategies to circumvent them and achieve true molecular resolution fluorescence imaging under physiological conditions in cells.
期刊介绍:
Methods and Applications in Fluorescence focuses on new developments in fluorescence spectroscopy, imaging, microscopy, fluorescent probes, labels and (nano)materials. It will feature both methods and advanced (bio)applications and accepts original research articles, reviews and technical notes.