Yeongjin Lee, Yu Ri Nam, Keumyeon Kim, Seongyeon Jo, Chanwoo Park, Jeehee Lee, Eunu Kim, Hong Kee Kim, Haeshin Lee
{"title":"rev-Gelatin: A Gelatin with Reverse Thermo-Responsive Behavior Inspired by Candy and Ice Cubes Phase Dynamics.","authors":"Yeongjin Lee, Yu Ri Nam, Keumyeon Kim, Seongyeon Jo, Chanwoo Park, Jeehee Lee, Eunu Kim, Hong Kee Kim, Haeshin Lee","doi":"10.1002/mabi.202500144","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present \"rev-Gelatin\", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability. At ambient temperature, rev-Gelatin exists as a microgel solution with sufficient fluidity in the sol state. However, upon exposure to elevated temperatures approaching physiological temperature, rev-Gelatin microgels coalesce through surface melting, forming a stable gel. This sol-to-gel transition is especially advantageous for hemostatic applications. Upon contact with blood, the temperature elevation induces rapid gelation of rev-Gelatin, effectively creating a barrier that reduces bleeding time and blood loss. Additionally, rev-Gelatin shows promise as a submucosal injection agent for gastrointestinal surgeries, making it a new class of thermo-sensitive biomaterials.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e00144"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202500144","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability. At ambient temperature, rev-Gelatin exists as a microgel solution with sufficient fluidity in the sol state. However, upon exposure to elevated temperatures approaching physiological temperature, rev-Gelatin microgels coalesce through surface melting, forming a stable gel. This sol-to-gel transition is especially advantageous for hemostatic applications. Upon contact with blood, the temperature elevation induces rapid gelation of rev-Gelatin, effectively creating a barrier that reduces bleeding time and blood loss. Additionally, rev-Gelatin shows promise as a submucosal injection agent for gastrointestinal surgeries, making it a new class of thermo-sensitive biomaterials.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.