Karine S Da Correggio, Luís Otávio Santos, Felipe S Muylaert Barroso, Roberto N Galluzzo, Thiago Z L Chaves, Aldo von Wangenheim, Alexandre S C Onofre
{"title":"AI-Driven Fetal Liver Echotexture Analysis: A New Frontier in Predicting Neonatal Insulin Imbalance.","authors":"Karine S Da Correggio, Luís Otávio Santos, Felipe S Muylaert Barroso, Roberto N Galluzzo, Thiago Z L Chaves, Aldo von Wangenheim, Alexandre S C Onofre","doi":"10.1002/jum.70053","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.</p><p><strong>Methods: </strong>This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks. A balanced dataset was created by randomly excluding overrepresented categories. Artificial intelligence classification models developed using the FastAI library-ResNet-18, ResNet-34, ResNet-50, EfficientNet-B0, and EfficientNet-B7-were trained to detect elevated C-peptide levels (>75th percentile) in umbilical cord blood at birth, based on fetal hepatic ultrasonographic images.</p><p><strong>Results: </strong>Out of 2339 ultrasound images, 606 were excluded due to poor quality, resulting in 1733 images analyzed. Elevated C-peptide levels were observed in 34.3% of neonates. Among the 5 CNN models evaluated, EfficientNet-B0 demonstrated the highest overall performance, achieving a sensitivity of 86.5%, specificity of 82.1%, positive predictive value (PPV) of 83.0%, negative predictive value (NPV) of 85.7%, accuracy of 84.3%, and an area under the ROC curve (AUC) of 0.83 in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.</p><p><strong>Conclusion: </strong>AI-based analysis of fetal liver echotexture via ultrasound effectively predicted elevated neonatal C-peptide levels, offering a promising non-invasive method for detecting insulin imbalance in newborns.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.70053","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.
Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks. A balanced dataset was created by randomly excluding overrepresented categories. Artificial intelligence classification models developed using the FastAI library-ResNet-18, ResNet-34, ResNet-50, EfficientNet-B0, and EfficientNet-B7-were trained to detect elevated C-peptide levels (>75th percentile) in umbilical cord blood at birth, based on fetal hepatic ultrasonographic images.
Results: Out of 2339 ultrasound images, 606 were excluded due to poor quality, resulting in 1733 images analyzed. Elevated C-peptide levels were observed in 34.3% of neonates. Among the 5 CNN models evaluated, EfficientNet-B0 demonstrated the highest overall performance, achieving a sensitivity of 86.5%, specificity of 82.1%, positive predictive value (PPV) of 83.0%, negative predictive value (NPV) of 85.7%, accuracy of 84.3%, and an area under the ROC curve (AUC) of 0.83 in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.
Conclusion: AI-based analysis of fetal liver echotexture via ultrasound effectively predicted elevated neonatal C-peptide levels, offering a promising non-invasive method for detecting insulin imbalance in newborns.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound