A Deep Learning-Based Fully Automated Cardiac MRI Segmentation Approach for Tetralogy of Fallot Patients.

IF 3.5 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Wen-Yen Chai, Gigin Lin, Chao-Jan Wang, Hsin-Ju Chiang, Shu-Hang Ng, Yi-Shan Kuo, Yu-Chun Lin
{"title":"A Deep Learning-Based Fully Automated Cardiac MRI Segmentation Approach for Tetralogy of Fallot Patients.","authors":"Wen-Yen Chai, Gigin Lin, Chao-Jan Wang, Hsin-Ju Chiang, Shu-Hang Ng, Yi-Shan Kuo, Yu-Chun Lin","doi":"10.1002/jmri.70113","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Automated cardiac MR segmentation enables accurate and reproducible ventricular function assessment in Tetralogy of Fallot (ToF), whereas manual segmentation remains time-consuming and variable.</p><p><strong>Purpose: </strong>To evaluate the deep learning (DL)-based models for automatic left ventricle (LV), right ventricle (RV), and LV myocardium segmentation in ToF, compared with manual reference standard annotations.</p><p><strong>Study type: </strong>Retrospective.</p><p><strong>Population: </strong>427 patients with diverse cardiac conditions (305 non-ToF, 122 ToF), with 395 for training/validation, 32 ToF for internal testing, and 12 external ToF for generalizability assessment.</p><p><strong>Field strength/sequence: </strong>Steady-state free precession cine sequence at 1.5/3 T.</p><p><strong>Assessment: </strong>U-Net, Deep U-Net, and MultiResUNet were trained under three regimes (non-ToF, ToF-only, mixed), using manual segmentations from one radiologist and one researcher (20 and 10 years of experience, respectively) as reference, with consensus for discrepancies. Performance for LV, RV, and LV myocardium was evaluated using Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and F1-score, alongside regional (basal, middle, apical) and global ventricular function comparisons to manual results.</p><p><strong>Statistical tests: </strong>Friedman tests were applied for architecture and regime comparisons, paired Wilcoxon tests for ED-ES differences, and Pearson's r for assessing agreement in global function.</p><p><strong>Results: </strong>MultiResUNet model trained on a mixed dataset (TOF and non-TOF cases) achieved the best segmentation performance, with DSCs of 96.1% for LV and 93.5% for RV. In the internal test set, DSCs for LV, RV, and LV myocardium were 97.3%, 94.7%, and 90.7% at end-diastole, and 93.6%, 92.1%, and 87.8% at end-systole, with ventricular measurement correlations ranging from 0.84 to 0.99. Regional analysis showed LV DSCs of 96.3% (basal), 96.4% (middle), and 94.1% (apical), and RV DSCs of 92.8%, 94.2%, and 89.6%. External validation (n = 12) showed correlations ranging from 0.81 to 0.98.</p><p><strong>Conclusion: </strong>The MultiResUNet model enabled accurate automated cardiac MRI segmentation in ToF with the potential to streamline workflows and improve disease monitoring.</p><p><strong>Evidence level: </strong>3.</p><p><strong>Technical efficacy: </strong>Stage 2.</p>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.70113","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Automated cardiac MR segmentation enables accurate and reproducible ventricular function assessment in Tetralogy of Fallot (ToF), whereas manual segmentation remains time-consuming and variable.

Purpose: To evaluate the deep learning (DL)-based models for automatic left ventricle (LV), right ventricle (RV), and LV myocardium segmentation in ToF, compared with manual reference standard annotations.

Study type: Retrospective.

Population: 427 patients with diverse cardiac conditions (305 non-ToF, 122 ToF), with 395 for training/validation, 32 ToF for internal testing, and 12 external ToF for generalizability assessment.

Field strength/sequence: Steady-state free precession cine sequence at 1.5/3 T.

Assessment: U-Net, Deep U-Net, and MultiResUNet were trained under three regimes (non-ToF, ToF-only, mixed), using manual segmentations from one radiologist and one researcher (20 and 10 years of experience, respectively) as reference, with consensus for discrepancies. Performance for LV, RV, and LV myocardium was evaluated using Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and F1-score, alongside regional (basal, middle, apical) and global ventricular function comparisons to manual results.

Statistical tests: Friedman tests were applied for architecture and regime comparisons, paired Wilcoxon tests for ED-ES differences, and Pearson's r for assessing agreement in global function.

Results: MultiResUNet model trained on a mixed dataset (TOF and non-TOF cases) achieved the best segmentation performance, with DSCs of 96.1% for LV and 93.5% for RV. In the internal test set, DSCs for LV, RV, and LV myocardium were 97.3%, 94.7%, and 90.7% at end-diastole, and 93.6%, 92.1%, and 87.8% at end-systole, with ventricular measurement correlations ranging from 0.84 to 0.99. Regional analysis showed LV DSCs of 96.3% (basal), 96.4% (middle), and 94.1% (apical), and RV DSCs of 92.8%, 94.2%, and 89.6%. External validation (n = 12) showed correlations ranging from 0.81 to 0.98.

Conclusion: The MultiResUNet model enabled accurate automated cardiac MRI segmentation in ToF with the potential to streamline workflows and improve disease monitoring.

Evidence level: 3.

Technical efficacy: Stage 2.

基于深度学习的法洛四联症全自动心脏MRI分割方法。
背景:在法洛四联症(ToF)中,自动心脏MR分割能够准确和可重复地评估心室功能,而手动分割仍然耗时且可变。目的:评价基于深度学习(DL)的ToF左心室(LV)、右心室(RV)和左室心肌自动分割模型,并与人工参考标准注释进行比较。研究类型:回顾性。人群:427例不同心脏病患者(非ToF 305例,ToF 122例),其中395例用于培训/验证,32例用于内部测试,12例用于普遍性评估的外部ToF。场强/序列:1.5/3 T的稳态自由进动序列。评估:U-Net、Deep U-Net和MultiResUNet在三种方案(非tof、仅tof、混合)下进行训练,使用一名放射科医生和一名研究人员(分别有20年和10年经验)的手动分割作为参考,对差异达成共识。左室、右室和左室心肌的表现采用Dice相似系数(DSC)、交汇比(IoU)和f1评分进行评估,并与手工结果进行局部(基底、中、尖)和全局心室功能比较。统计检验:弗里德曼检验用于结构和制度比较,配对Wilcoxon检验用于ED-ES差异,Pearson r检验用于评估整体功能的一致性。结果:在混合数据集(TOF和非TOF)上训练的MultiResUNet模型获得了最好的分割性能,LV的dsc为96.1%,RV为93.5%。在内部测试集中,左室、右室和左室心肌的dsc在舒张末期分别为97.3%、94.7%和90.7%,在收缩期末期分别为93.6%、92.1%和87.8%,心室测量相关性为0.84 ~ 0.99。区域分析显示,LV dsc为96.3%(基部)、96.4%(中部)和94.1%(根尖),RV dsc为92.8%、94.2%和89.6%。外部验证(n = 12)显示相关性在0.81 ~ 0.98之间。结论:MultiResUNet模型能够在ToF中实现准确的自动心脏MRI分割,具有简化工作流程和改善疾病监测的潜力。证据等级:3。技术功效:第二阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.70
自引率
6.80%
发文量
494
审稿时长
2 months
期刊介绍: The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信