Deciphering curcumin's differential inhibition of KPC-3, L2, and CTX-M-15 β-lactamases through binding energetics and structural dynamics.

In silico pharmacology Pub Date : 2025-09-04 eCollection Date: 2025-01-01 DOI:10.1007/s40203-025-00421-6
Rafiullah Shirzadi, Abdul Musawer Bayan, Sayed Hussain Mosawi
{"title":"Deciphering curcumin's differential inhibition of KPC-3, L2, and CTX-M-15 β-lactamases through binding energetics and structural dynamics.","authors":"Rafiullah Shirzadi, Abdul Musawer Bayan, Sayed Hussain Mosawi","doi":"10.1007/s40203-025-00421-6","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of β-lactamase-mediated resistance in Gram-negative pathogens has created an urgent need for novel inhibitors to preserve antibiotic efficacy. This study explores the potential of curcumin, a natural polyphenol with known antimicrobial properties, as a broad-spectrum inhibitor of class A serine-β-lactamases (SBLs) through comprehensive computational analysis. Using molecular docking, 200 ns molecular dynamics simulations, and binding energy calculations, we investigated curcumin's interactions with three clinically important SBLs: KPC-3, CTX-M-15, and L2. Our results demonstrate curcumin's strong binding affinity across all three enzymes, with particularly potent inhibition of L2 (ΔG = - 7.67 kcal/mol) driven by favorable van der Waals interactions (- 115.03 kJ/mol) and an extensive hydrogen bonding network involving catalytic residues Ser70 and Ser130. Molecular dynamics simulations revealed distinct inhibition mechanisms: L2 showed global stabilization with reduced flexibility (15-20% decrease in RMSF); CTX-M-15 exhibited balanced binding with moderate solvation effects; while KPC-3 displayed local active-site stabilization despite overall structural destabilization, evidenced by increased radius of gyration. These findings highlight curcumin's remarkable adaptability as a multi-target β-lactamase inhibitor, capable of employing enzyme-specific strategies while maintaining core inhibitory interactions. The study provides crucial molecular insights that could guide the development of curcumin-derived adjuvants to combat β-lactam resistance, bridging traditional medicine and modern drug discovery approaches to address this critical public health challenge.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-025-00421-6.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 3","pages":"128"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00421-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of β-lactamase-mediated resistance in Gram-negative pathogens has created an urgent need for novel inhibitors to preserve antibiotic efficacy. This study explores the potential of curcumin, a natural polyphenol with known antimicrobial properties, as a broad-spectrum inhibitor of class A serine-β-lactamases (SBLs) through comprehensive computational analysis. Using molecular docking, 200 ns molecular dynamics simulations, and binding energy calculations, we investigated curcumin's interactions with three clinically important SBLs: KPC-3, CTX-M-15, and L2. Our results demonstrate curcumin's strong binding affinity across all three enzymes, with particularly potent inhibition of L2 (ΔG = - 7.67 kcal/mol) driven by favorable van der Waals interactions (- 115.03 kJ/mol) and an extensive hydrogen bonding network involving catalytic residues Ser70 and Ser130. Molecular dynamics simulations revealed distinct inhibition mechanisms: L2 showed global stabilization with reduced flexibility (15-20% decrease in RMSF); CTX-M-15 exhibited balanced binding with moderate solvation effects; while KPC-3 displayed local active-site stabilization despite overall structural destabilization, evidenced by increased radius of gyration. These findings highlight curcumin's remarkable adaptability as a multi-target β-lactamase inhibitor, capable of employing enzyme-specific strategies while maintaining core inhibitory interactions. The study provides crucial molecular insights that could guide the development of curcumin-derived adjuvants to combat β-lactam resistance, bridging traditional medicine and modern drug discovery approaches to address this critical public health challenge.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-025-00421-6.

通过结合能量学和结构动力学解读姜黄素对KPC-3、L2和CTX-M-15 β-内酰胺酶的差异抑制作用。
革兰氏阴性病原体中β-内酰胺酶介导的耐药性的上升,迫切需要新的抑制剂来保持抗生素的功效。本研究通过综合计算分析,探讨了姜黄素作为a类丝氨酸-β-内酰胺酶(SBLs)的广谱抑制剂的潜力。姜黄素是一种已知具有抗菌特性的天然多酚。通过分子对接、200 ns分子动力学模拟和结合能计算,我们研究了姜黄素与三种临床重要的SBLs: KPC-3、CTX-M-15和L2的相互作用。我们的研究结果表明,姜黄素对所有三种酶都有很强的结合亲和力,特别有效的抑制L2 (ΔG = - 7.67 kcal/mol),这是由有利的范德华相互作用(- 115.03 kJ/mol)和涉及催化残基Ser70和Ser130的广泛氢键网络驱动的。分子动力学模拟揭示了不同的抑制机制:L2表现出整体稳定,柔韧性降低(RMSF降低15-20%);CTX-M-15结合平衡,溶剂化效果适中;尽管整体结构失稳,但KPC-3表现出局部活性位点稳定,这可以通过旋转半径的增加来证明。这些发现突出了姜黄素作为多靶点β-内酰胺酶抑制剂的显著适应性,能够在保持核心抑制相互作用的同时采用酶特异性策略。该研究提供了关键的分子见解,可以指导姜黄素衍生佐剂的开发,以对抗β-内酰胺耐药性,连接传统医学和现代药物发现方法,以解决这一关键的公共卫生挑战。补充资料:在线版本包含补充资料,网址为10.1007/s40203-025-00421-6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信