{"title":"Wound Healing Properties of Nymphaea alba (Nymphaeaceae) Flower Extract: Evidence from In Vivo, In Vitro, and In Silico Network Analysis.","authors":"Deepika Pathak, Avijit Mazumder","doi":"10.2174/0115734099367529250728112330","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The white water lily (Nymphaea alba) is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of Nymphaea alba flower extract (NAFE) using both in vitro and in vivo models, as well as computational network analysis.</p><p><strong>Methods: </strong>Qualitative phytochemical screening of NAFE was conducted using standard techniques. Cytotoxicity was assessed on HaCaT keratinocyte cells at concentrations ranging from 0 to 1000 μg/ml. In vivo wound healing was evaluated using excision wound models in Wistar albino rats treated with 2.5% and 5% NAFE ointments, measuring wound contraction, epithelialization time, and breaking strength. In vitro scratch assays were used to assess cell migration at selected concentrations of NAFE. A wound-healing-associated network analysis was performed using IMPPAT, STRING, GeneCards, and OMIM databases to explore the molecular targets and interactions of bioactive compounds.</p><p><strong>Results: </strong>Phytochemical analysis confirmed the presence of alkaloids, flavonoids, phenolics, tannins, and glycosides. NAFE was found to be non-cytotoxic with an IC50 of 245 μg/ml. In vivo, 5% NAFE ointment showed 98.92% wound closure by day 14 and complete closure by day 21, comparable to betadine. Epithelialization time (15.83±0.16 days) was nearly equivalent to the standard drug. In vitro assays demonstrated enhanced HaCaT cell migration at concentrations of 122.5 and 245 μg/ml. Network analysis identified kaempferol and quercetin as key compounds interacting with wound-healing proteins, notably AKT1, ESR1, and EGFR.</p><p><strong>Discussion: </strong>The findings suggest that NAFE promotes wound healing by enhancing wound contraction, epithelialization, and cell migration, likely through the modulation of molecular pathways involved in tissue repair. The presence of bioactive compounds such as kaempferol and quercetin underpins the extract's pharmacological potential.</p><p><strong>Conclusion: </strong>Nymphaea alba flower extract exhibits promising wound-healing activity through multiple mechanisms, including enhancement of cell migration and regulation of key proteins involved in tissue regeneration. These results support its potential as a natural therapeutic agent in wound management.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099367529250728112330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The white water lily (Nymphaea alba) is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of Nymphaea alba flower extract (NAFE) using both in vitro and in vivo models, as well as computational network analysis.
Methods: Qualitative phytochemical screening of NAFE was conducted using standard techniques. Cytotoxicity was assessed on HaCaT keratinocyte cells at concentrations ranging from 0 to 1000 μg/ml. In vivo wound healing was evaluated using excision wound models in Wistar albino rats treated with 2.5% and 5% NAFE ointments, measuring wound contraction, epithelialization time, and breaking strength. In vitro scratch assays were used to assess cell migration at selected concentrations of NAFE. A wound-healing-associated network analysis was performed using IMPPAT, STRING, GeneCards, and OMIM databases to explore the molecular targets and interactions of bioactive compounds.
Results: Phytochemical analysis confirmed the presence of alkaloids, flavonoids, phenolics, tannins, and glycosides. NAFE was found to be non-cytotoxic with an IC50 of 245 μg/ml. In vivo, 5% NAFE ointment showed 98.92% wound closure by day 14 and complete closure by day 21, comparable to betadine. Epithelialization time (15.83±0.16 days) was nearly equivalent to the standard drug. In vitro assays demonstrated enhanced HaCaT cell migration at concentrations of 122.5 and 245 μg/ml. Network analysis identified kaempferol and quercetin as key compounds interacting with wound-healing proteins, notably AKT1, ESR1, and EGFR.
Discussion: The findings suggest that NAFE promotes wound healing by enhancing wound contraction, epithelialization, and cell migration, likely through the modulation of molecular pathways involved in tissue repair. The presence of bioactive compounds such as kaempferol and quercetin underpins the extract's pharmacological potential.
Conclusion: Nymphaea alba flower extract exhibits promising wound-healing activity through multiple mechanisms, including enhancement of cell migration and regulation of key proteins involved in tissue regeneration. These results support its potential as a natural therapeutic agent in wound management.