Recent advances in the design of small molecules targeting human ClpP.

IF 3.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Future medicinal chemistry Pub Date : 2025-10-01 Epub Date: 2025-09-08 DOI:10.1080/17568919.2025.2557175
Ziyi Shu, Jiangnan Zhang, Yi Wu, Tao Yang, Youfu Luo
{"title":"Recent advances in the design of small molecules targeting human ClpP.","authors":"Ziyi Shu, Jiangnan Zhang, Yi Wu, Tao Yang, Youfu Luo","doi":"10.1080/17568919.2025.2557175","DOIUrl":null,"url":null,"abstract":"<p><p>Human mitochondrial ClpP (hClpP), a pivotal protease regulating mitochondrial protein homeostasis, has emerged as an important target for anticancer drug development. In recent years, significant progress has been made in designing small molecules targeting hClpP, primarily classified into activators and inhibitors. Activators specifically stimulate ClpP proteolytic activity by mimicking the mechanism of its chaperone protein ClpX, with representative compounds, such as imipridone derivatives (ONC201/206/212) and their optimized products (ZK53, 7k, etc.) demonstrating excellent antitumor efficacy. Investigation of their structural design and pharmacological properties provides theoretical insights for subsequent drug development. Significant progress has been made in agonist research, and although there are still issues that need to be addressed, hClpP-targeted drugs hold promise as new therapies for the treatment of cancer.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2407-2424"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2557175","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human mitochondrial ClpP (hClpP), a pivotal protease regulating mitochondrial protein homeostasis, has emerged as an important target for anticancer drug development. In recent years, significant progress has been made in designing small molecules targeting hClpP, primarily classified into activators and inhibitors. Activators specifically stimulate ClpP proteolytic activity by mimicking the mechanism of its chaperone protein ClpX, with representative compounds, such as imipridone derivatives (ONC201/206/212) and their optimized products (ZK53, 7k, etc.) demonstrating excellent antitumor efficacy. Investigation of their structural design and pharmacological properties provides theoretical insights for subsequent drug development. Significant progress has been made in agonist research, and although there are still issues that need to be addressed, hClpP-targeted drugs hold promise as new therapies for the treatment of cancer.

靶向人ClpP小分子设计的最新进展。
人类线粒体ClpP (hClpP)是一种调节线粒体蛋白稳态的关键蛋白酶,已成为抗癌药物开发的重要靶点。近年来,针对hClpP的小分子设计取得了重大进展,主要分为活化剂和抑制剂两大类。激活剂通过模拟其伴侣蛋白ClpX的机制特异性刺激ClpP的蛋白水解活性,具有代表性的化合物如吡普利酮衍生物(ONC201/206/212)及其优化产物(ZK53、7k等)显示出优异的抗肿瘤功效。对其结构设计和药理特性的研究为后续的药物开发提供了理论见解。激动剂的研究已经取得了重大进展,尽管仍有一些问题需要解决,但以hclpp为目标的药物有望成为治疗癌症的新疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信