{"title":"Tooth loss impairs cognitive function in SAMP8 mice by aggravating pyroptosis of microglia via the cGAS/STING pathway.","authors":"Xu Sun, Yunping Lu, Jiangqi Hu, Shixiang Meng, Xiaoyu Wang, Qingsong Jiang","doi":"10.3389/fnagi.2025.1628520","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's Disease (AD) is a common neurodegenerative disease among the elderly population. It has been posited that the onset and progression of AD are influenced by a combination of various factors. Occlusal support loss due to tooth loss has been reported to be a risk factor triggering cognitive dysfunction. This study aimed to investigate the relationship between tooth loss and cognitive dysfunction and illustrate the role of pyroptosis in advancing Alzheimer's disease.</p><p><strong>Methods: </strong>Male 5-month-old senescence-accelerated mouse strain P8 (SAMP8) mice were divided into two groups (n = 6): the S (sham-operated) and TL (tooth loss) groups. We assessed spatial memory ability using the Y-maze and Novel Object Recognition (NOR) tests. In addition, we performed pathological and molecular biological assessments of the hippocampus to evaluate pyroptosis-related indicators and changes in cGAS/STING. We further verified the correlation between the two <i>in vitro</i>.</p><p><strong>Results: </strong>The pathological section staining revealed an upregulation of GSDMD, a target protein of pyroptosis, and abnormal activation of the cGAS/STING pathway, particularly in microglia, after tooth loss. <i>In vitro</i>, we demonstrated that the BV2 microglia knockdown STING group improved the inflammatory cascade response and down-regulated the pyroptotic features.</p><p><strong>Discussion: </strong>These data suggest that the occlusal support loss due to tooth loss induces pyroptosis-related protein deposition, which may be intimately associated with the cGAS/STING signaling pathway. This provides new insights into the treatment and prevention of oral health and cognitive behavioural disorders in the elderly population.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1628520"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1628520","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Alzheimer's Disease (AD) is a common neurodegenerative disease among the elderly population. It has been posited that the onset and progression of AD are influenced by a combination of various factors. Occlusal support loss due to tooth loss has been reported to be a risk factor triggering cognitive dysfunction. This study aimed to investigate the relationship between tooth loss and cognitive dysfunction and illustrate the role of pyroptosis in advancing Alzheimer's disease.
Methods: Male 5-month-old senescence-accelerated mouse strain P8 (SAMP8) mice were divided into two groups (n = 6): the S (sham-operated) and TL (tooth loss) groups. We assessed spatial memory ability using the Y-maze and Novel Object Recognition (NOR) tests. In addition, we performed pathological and molecular biological assessments of the hippocampus to evaluate pyroptosis-related indicators and changes in cGAS/STING. We further verified the correlation between the two in vitro.
Results: The pathological section staining revealed an upregulation of GSDMD, a target protein of pyroptosis, and abnormal activation of the cGAS/STING pathway, particularly in microglia, after tooth loss. In vitro, we demonstrated that the BV2 microglia knockdown STING group improved the inflammatory cascade response and down-regulated the pyroptotic features.
Discussion: These data suggest that the occlusal support loss due to tooth loss induces pyroptosis-related protein deposition, which may be intimately associated with the cGAS/STING signaling pathway. This provides new insights into the treatment and prevention of oral health and cognitive behavioural disorders in the elderly population.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.