Doubly Robust Control Outcome Calibration Approach Estimation of Conditional Effects with Uncontrolled Confounding.

IF 4.4 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Wen Wei Loh
{"title":"Doubly Robust Control Outcome Calibration Approach Estimation of Conditional Effects with Uncontrolled Confounding.","authors":"Wen Wei Loh","doi":"10.1097/EDE.0000000000001907","DOIUrl":null,"url":null,"abstract":"<p><p>Drawing causal conclusions about nonrandomized exposures rests on assuming no uncontrolled confounding, but it is rarely justifiable to rule out all putative violations of this routinely made yet empirically untestable assumption. Alternatively, this assumption can be avoided by leveraging negative control outcomes using the control outcome calibration approach (COCA). The existing COCA estimator of the average causal effect relies on correctly specifying the mean negative control outcome model, with a closed-form solution for the main exposure effect. In this article, we propose a doubly robust COCA estimator of the average causal effect that relaxes this modeling requirement and permits effect modification through covariate-exposure interaction terms. The doubly robust COCA estimator uses correctly specified exposure and focal outcome models to protect against biases from an incorrectly specified negative control outcome model. The ability to obtain unbiased point estimates and inferences is empirically evaluated using a simulation study. We demonstrate doubly robust COCA using a publicly available dataset to evaluate the effect of volunteering on mental health. This method is practical and easy to implement and permits unbiased estimation of causal effects even amid uncontrolled confounding.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001907","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Drawing causal conclusions about nonrandomized exposures rests on assuming no uncontrolled confounding, but it is rarely justifiable to rule out all putative violations of this routinely made yet empirically untestable assumption. Alternatively, this assumption can be avoided by leveraging negative control outcomes using the control outcome calibration approach (COCA). The existing COCA estimator of the average causal effect relies on correctly specifying the mean negative control outcome model, with a closed-form solution for the main exposure effect. In this article, we propose a doubly robust COCA estimator of the average causal effect that relaxes this modeling requirement and permits effect modification through covariate-exposure interaction terms. The doubly robust COCA estimator uses correctly specified exposure and focal outcome models to protect against biases from an incorrectly specified negative control outcome model. The ability to obtain unbiased point estimates and inferences is empirically evaluated using a simulation study. We demonstrate doubly robust COCA using a publicly available dataset to evaluate the effect of volunteering on mental health. This method is practical and easy to implement and permits unbiased estimation of causal effects even amid uncontrolled confounding.

双鲁棒控制结果校准方法估计非控制混杂条件效应。
要得出关于非随机暴露的因果结论,需要假设没有不受控制的混杂因素,但要排除所有可能违反这一常规但在经验上无法检验的假设的情况,几乎是不合理的。或者,可以通过使用控制结果校准方法(COCA)利用负控制结果来避免这种假设。现有的平均因果效应的COCA估计依赖于正确指定平均负控制结果模型,对主要暴露效应有一个封闭的解。在本文中,我们提出了一种平均因果效应的双鲁棒COCA估计器,它放宽了这种建模要求,并允许通过协变量暴露交互项对效果进行修改。双鲁棒COCA估计器使用正确指定的暴露和焦点结果模型来防止来自错误指定的负控制结果模型的偏差。获得无偏点估计和推断的能力是通过模拟研究进行经验评估的。我们使用公开可用的数据集来评估志愿服务对心理健康的影响,证明了双重稳健的COCA。该方法实用且易于实现,即使在不受控制的混杂情况下也能对因果效应进行无偏估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信