Zedong Huang, Haoran Wang, Wenfeng He, Shulei Qin, Yuxuan Chen, Shanshan Cai, Jun Luo, Miaoduo Deng
{"title":"Modification of Amino-Functionalized Organic-Silica Hybrid Monoliths via a Catalyst-Free Amino-Yne Click Reaction for Capillary Liquid Chromatography.","authors":"Zedong Huang, Haoran Wang, Wenfeng He, Shulei Qin, Yuxuan Chen, Shanshan Cai, Jun Luo, Miaoduo Deng","doi":"10.1002/elps.70022","DOIUrl":null,"url":null,"abstract":"<p><p>A novel post-modification strategy was developed for rapid functionalization of monoliths through amino-yne click chemistry. This approach enabled the conjugation of activated alkynes onto amino-functionalized organic-silica hybrid monolith surfaces under mild, catalyst-free conditions. Systematic investigation of critical reaction parameters was conducted to optimize the post-modification process. The morphological and structural characteristics of the prepared monolith were characterized by scanning electron microscopy (SEM) and nitrogen adsorption measurements. The successful grafting of functional groups onto the monolith surface was confirmed by contact angle analysis, Fourier transform infrared (FT-IR) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The functionalized monolith demonstrated chromatographic selectivity for diverse analytes, including phenolic compounds and some weakly polar/nonpolar compounds (benzoin/benzoin methyl ether, styrene/p-chlorostyrene, and 1-naphthylethylamine/naphthalene). Furthermore, it was successfully applied to the quantitative analysis of honokiol in authentic magnolol samples, showcasing its potential for practical analytical applications.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.70022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel post-modification strategy was developed for rapid functionalization of monoliths through amino-yne click chemistry. This approach enabled the conjugation of activated alkynes onto amino-functionalized organic-silica hybrid monolith surfaces under mild, catalyst-free conditions. Systematic investigation of critical reaction parameters was conducted to optimize the post-modification process. The morphological and structural characteristics of the prepared monolith were characterized by scanning electron microscopy (SEM) and nitrogen adsorption measurements. The successful grafting of functional groups onto the monolith surface was confirmed by contact angle analysis, Fourier transform infrared (FT-IR) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The functionalized monolith demonstrated chromatographic selectivity for diverse analytes, including phenolic compounds and some weakly polar/nonpolar compounds (benzoin/benzoin methyl ether, styrene/p-chlorostyrene, and 1-naphthylethylamine/naphthalene). Furthermore, it was successfully applied to the quantitative analysis of honokiol in authentic magnolol samples, showcasing its potential for practical analytical applications.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.