{"title":"Development and Exploration of Organic Compounds as Aldose Reductase Inhibitors: An Overview.","authors":"Bhanupriya Bhrigu, Shikha Sharma, Bimal Krishna Banik","doi":"10.2174/0115680266368117250826105101","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in the body's natural glucose levels have been associated with the onset of diabetes mellitus. It is frequently accompanied by a number of long-term consequences, including cardiovascular disease, retinopathy, nephropathy, and cataracts. Aldose reductase (AR), an enzyme belonging to the aldoketo reductase superfamily, plays a crucial role in the polyol pathway of glucose metabolism by converting glucose into sorbitol. Aldose reductase inhibitors (ARIs), a key target for reducing sorbitol flow through the polyol pathway, may be a new target for treating significant diabetic complications. A variety of structural classes of ARIs have been developed. These include: i) derivatives of carboxylic acids (e.g., Epalrestat, Alrestatin, Zopalrestat, Zenarestat, Ponalrestat, Lidorestat, and Tolrestat); ii) derivatives of spirohydantoins and related cyclic amides (e.g., Sorbinil, Minalrestat, and Fidarestat); and iii) phenolic derivatives (e.g., related to Benzopyran- 4-one and Chalcone). The current review article provides concise details of the various chemical classes that aldose reductase inhibitors play in the treatment of diabetic complications. This also describes the advancements made in ARI research and possible applications by obtaining the required data. The process involves thoroughly searching multiple databases-such as PubMed, ScienceDirect, and SciFinder-for citations.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266368117250826105101","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in the body's natural glucose levels have been associated with the onset of diabetes mellitus. It is frequently accompanied by a number of long-term consequences, including cardiovascular disease, retinopathy, nephropathy, and cataracts. Aldose reductase (AR), an enzyme belonging to the aldoketo reductase superfamily, plays a crucial role in the polyol pathway of glucose metabolism by converting glucose into sorbitol. Aldose reductase inhibitors (ARIs), a key target for reducing sorbitol flow through the polyol pathway, may be a new target for treating significant diabetic complications. A variety of structural classes of ARIs have been developed. These include: i) derivatives of carboxylic acids (e.g., Epalrestat, Alrestatin, Zopalrestat, Zenarestat, Ponalrestat, Lidorestat, and Tolrestat); ii) derivatives of spirohydantoins and related cyclic amides (e.g., Sorbinil, Minalrestat, and Fidarestat); and iii) phenolic derivatives (e.g., related to Benzopyran- 4-one and Chalcone). The current review article provides concise details of the various chemical classes that aldose reductase inhibitors play in the treatment of diabetic complications. This also describes the advancements made in ARI research and possible applications by obtaining the required data. The process involves thoroughly searching multiple databases-such as PubMed, ScienceDirect, and SciFinder-for citations.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.