Physics-Embedded Machine Learning for Fatigue Cumulative Damage Prediction

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Zhiyuan Gao, Xiaomo Jiang, Yifan Guo, Mingqing Cui, Shengbo Wang
{"title":"Physics-Embedded Machine Learning for Fatigue Cumulative Damage Prediction","authors":"Zhiyuan Gao,&nbsp;Xiaomo Jiang,&nbsp;Yifan Guo,&nbsp;Mingqing Cui,&nbsp;Shengbo Wang","doi":"10.1111/ffe.70036","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small-sample conditions. This study proposes an innovative physics-embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data-driven algorithms. The framework employs a dual-regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data-scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 10","pages":"4352-4374"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70036","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small-sample conditions. This study proposes an innovative physics-embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data-driven algorithms. The framework employs a dual-regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data-scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction.

物理嵌入式机器学习疲劳累积损伤预测
疲劳损伤累积对机械结构的安全性和可靠性至关重要,但准确预测仍然具有挑战性,特别是在小样本条件下。本研究提出了一种创新的物理嵌入式机器学习(ML)框架,通过将Manson-Halford (MH)物理模型与数据驱动算法相结合,增强剩余疲劳损伤预测。该框架采用双回归器方法:一个回归器嵌入MH模型来预测相互作用系数,而另一个回归器是纯粹的数据驱动来直接预测剩余疲劳损伤,并使用定制的损失函数来加强两个输出之间的物理一致性。一个包含14种材料的汇编数据集证明了该框架优于6个基线ML模型。值得注意的是,即使在训练数据减少30%的情况下,该模型仍保持了很高的准确性,显示了其在数据稀缺场景下的鲁棒性。通过将物理机制与机器学习相协调,本研究为疲劳损伤预测提供了一种可推广和有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信