Magnetite Nanoparticles Enhancing H2-Driven Biomethanation in a Mixed Microbial Community

IF 6.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Matteo Tucci, Jasper I Sabangan, Carolina Cruz Viggi, Lucia Bertaccini, Francesca Iosi, Emilio D'Ugo, Daniela Uccelletti, Bruna Matturro, Andrea Firrincieli, Agnese Piacentini, Stefano Fazi, Federico Aulenta
{"title":"Magnetite Nanoparticles Enhancing H2-Driven Biomethanation in a Mixed Microbial Community","authors":"Matteo Tucci,&nbsp;Jasper I Sabangan,&nbsp;Carolina Cruz Viggi,&nbsp;Lucia Bertaccini,&nbsp;Francesca Iosi,&nbsp;Emilio D'Ugo,&nbsp;Daniela Uccelletti,&nbsp;Bruna Matturro,&nbsp;Andrea Firrincieli,&nbsp;Agnese Piacentini,&nbsp;Stefano Fazi,&nbsp;Federico Aulenta","doi":"10.1002/gch2.202500367","DOIUrl":null,"url":null,"abstract":"<p>Biological methanation is increasingly considered for biogas upgrading. Here, the supplementation of conductive magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles is investigated as a strategy to enhance H<sub>2</sub>-driven biomethanation in a mixed hydrogenotrophic methanogenic community. An enrichment culture, maintained for over 180 days in a fill-and-draw anaerobic bioreactor under H<sub>2</sub>/CO<sub>2</sub> feeding, is used to inoculate batch microcosms containing 0, 1.25, and 2.5 gFe L<sup>−1</sup> of magnetite. Magnetite addition resulted in a dose-dependent increase in maximum methane production rates—up to 13-fold compared to controls—and sustained high hydrogen-to-methane conversion yields (78–107%). 16S rRNA gene sequencing reveals that archaeal community composition remained dominated by hydrogenotrophic <i>Methanobrevibacter</i> and <i>Methanobacterium</i> spp., whereas bacterial populations shifted from acetogenic <i>Sporomusa</i> and <i>Acetobacterium</i> spp. toward H<sub>2</sub>-oxidizing <i>Paracoccus</i> and <i>Thauera</i> spp. at higher magnetite concentrations. Electron microscopy and energy-dispersive X‑ray spectroscopy show that magnetite nanoparticles formed conductive networks bridging microbial cells, and fluorescence in situ hybridization confirmed co-localization of methanogens and <i>Paracoccus</i> within these aggregates. The findings support a direct interspecies electron transfer (DIET) mechanism facilitated by magnetite, whereby <i>Paracoccus</i> spp. oxidize H<sub>2</sub> and shuttle electrons to methanogens, accelerating biomethanation. These results highlight the potential of magnetite-mediated DIET to improve power-to-methane processes and advance biogas upgrading technologies.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"9 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202500367","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202500367","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biological methanation is increasingly considered for biogas upgrading. Here, the supplementation of conductive magnetite (Fe3O4) nanoparticles is investigated as a strategy to enhance H2-driven biomethanation in a mixed hydrogenotrophic methanogenic community. An enrichment culture, maintained for over 180 days in a fill-and-draw anaerobic bioreactor under H2/CO2 feeding, is used to inoculate batch microcosms containing 0, 1.25, and 2.5 gFe L−1 of magnetite. Magnetite addition resulted in a dose-dependent increase in maximum methane production rates—up to 13-fold compared to controls—and sustained high hydrogen-to-methane conversion yields (78–107%). 16S rRNA gene sequencing reveals that archaeal community composition remained dominated by hydrogenotrophic Methanobrevibacter and Methanobacterium spp., whereas bacterial populations shifted from acetogenic Sporomusa and Acetobacterium spp. toward H2-oxidizing Paracoccus and Thauera spp. at higher magnetite concentrations. Electron microscopy and energy-dispersive X‑ray spectroscopy show that magnetite nanoparticles formed conductive networks bridging microbial cells, and fluorescence in situ hybridization confirmed co-localization of methanogens and Paracoccus within these aggregates. The findings support a direct interspecies electron transfer (DIET) mechanism facilitated by magnetite, whereby Paracoccus spp. oxidize H2 and shuttle electrons to methanogens, accelerating biomethanation. These results highlight the potential of magnetite-mediated DIET to improve power-to-methane processes and advance biogas upgrading technologies.

Abstract Image

磁铁矿纳米颗粒增强混合微生物群落中h2驱动的生物甲烷化
生物甲烷化越来越多地被考虑用于沼气升级。本文研究了在混合氢营养化产甲烷群落中,添加导电磁铁矿(Fe3O4)纳米颗粒作为增强h2驱动的生物甲烷化的策略。在H2/CO2进料条件下,在填充提取厌氧生物反应器中维持180天以上的富集培养,用于接种含有0、1.25和2.5 gFe L−1磁铁矿的批量微生物。与对照组相比,磁铁矿的加入使最大甲烷产量增加了13倍,并保持了较高的氢-甲烷转化率(78-107%)。16S rRNA基因测序结果显示,在较高磁铁矿浓度下,古细菌群落组成仍以氢营养型甲烷杆菌和甲烷杆菌为主,而细菌种群由产氢型孢子菌和产氢型醋酸杆菌向氧化型副球菌和Thauera类转变。电子显微镜和能量色散X射线光谱显示,磁铁矿纳米颗粒形成了连接微生物细胞的导电网络,荧光原位杂交证实了这些聚集体中产甲烷菌和副球菌的共定位。研究结果支持磁铁矿促进的直接种间电子转移(DIET)机制,副球菌在此机制下氧化H2并将电子传递给产甲烷菌,加速生物甲烷化。这些结果突出了磁铁矿介导的DIET在改善电能制甲烷过程和推进沼气升级技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信