Targeted Blockage of Pathological Extracellular Vesicles and Particles From Fibroblast-Like Synoviocytes for Osteoarthritis Relief: Proteomic Analysis and Cellular Effect

IF 14.5 1区 医学 Q1 CELL BIOLOGY
Bin Liu, Yansi Xian, Tao Shen, Yu Ben, Wenshu Wu, Yong Shi, Xueying An, Rui Peng, Wentian Gao, Wang Gong, Xiang Chen, Baosheng Guo, Qing Jiang
{"title":"Targeted Blockage of Pathological Extracellular Vesicles and Particles From Fibroblast-Like Synoviocytes for Osteoarthritis Relief: Proteomic Analysis and Cellular Effect","authors":"Bin Liu,&nbsp;Yansi Xian,&nbsp;Tao Shen,&nbsp;Yu Ben,&nbsp;Wenshu Wu,&nbsp;Yong Shi,&nbsp;Xueying An,&nbsp;Rui Peng,&nbsp;Wentian Gao,&nbsp;Wang Gong,&nbsp;Xiang Chen,&nbsp;Baosheng Guo,&nbsp;Qing Jiang","doi":"10.1002/jev2.70162","DOIUrl":null,"url":null,"abstract":"<p>Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells. We demonstrated that FLSs under inflammatory and senescent states in OA secreted pathogenic EVPs that propagated joint degeneration by disrupting chondrocyte homeostasis, polarizing macrophages towards a pro-inflammatory phenotype, and impairing chondrogenesis of mesenchymal stem cells. To therapeutically target these pathogenic EVPs, we engineered an adeno-associated virus 9 (AAV9) vector fused with a synovium-affinity peptide (HAP-1) to deliver shRNA against <i>Rab27a</i>, a key regulator of EVP secretion. Intra-articular administration of the engineered AAV9 in a murine OA model induced by destabilization of the medical meniscus significantly reduced synovial hyperplasia, cartilage degradation and inflammatory responses, while demonstrating satisfactory systemic biosafety. Our findings establish FLS-derived EVPs as critical mediators of OA pathogenesis and propose a targeted strategy to block their secretion, offering a promising disease-modifying therapeutic avenue for OA.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 9","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70162","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70162","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells. We demonstrated that FLSs under inflammatory and senescent states in OA secreted pathogenic EVPs that propagated joint degeneration by disrupting chondrocyte homeostasis, polarizing macrophages towards a pro-inflammatory phenotype, and impairing chondrogenesis of mesenchymal stem cells. To therapeutically target these pathogenic EVPs, we engineered an adeno-associated virus 9 (AAV9) vector fused with a synovium-affinity peptide (HAP-1) to deliver shRNA against Rab27a, a key regulator of EVP secretion. Intra-articular administration of the engineered AAV9 in a murine OA model induced by destabilization of the medical meniscus significantly reduced synovial hyperplasia, cartilage degradation and inflammatory responses, while demonstrating satisfactory systemic biosafety. Our findings establish FLS-derived EVPs as critical mediators of OA pathogenesis and propose a targeted strategy to block their secretion, offering a promising disease-modifying therapeutic avenue for OA.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

靶向阻断来自成纤维细胞样滑膜细胞的病理性细胞外囊泡和颗粒以缓解骨关节炎:蛋白质组学分析和细胞效应
骨关节炎(OA)是一种常见的衰弱性关节疾病,细胞间串扰失调会加速骨关节炎的发生,但成纤维细胞样滑膜细胞(FLS)衍生的细胞外囊泡和颗粒(EVPs)在疾病进展中的作用仍有待阐明。在这里,临床标本、动物模型和公开数据集的综合分析揭示了OA滑膜内外泌体通路的显著改变。蛋白质组学分析显示炎症和衰老FLSs衍生的evp具有不同的分子特征,反映了其亲本细胞的病理生理状态。我们证明,骨性关节炎中处于炎症和衰老状态的FLSs分泌致病性evp,通过破坏软骨细胞稳态、使巨噬细胞向促炎表型极化和损害间充质干细胞的软骨形成来传播关节变性。为了治疗这些致病性EVP,我们设计了一种与滑膜亲和肽(HAP-1)融合的腺相关病毒9 (AAV9)载体,以传递针对EVP分泌关键调节因子Rab27a的shRNA。在半月板不稳定诱导的小鼠OA模型中,关节内给予工程AAV9可显著减少滑膜增生、软骨退化和炎症反应,同时显示出令人满意的全身生物安全性。我们的研究结果证实了fls衍生的evp是OA发病的关键介质,并提出了阻断其分泌的靶向策略,为OA提供了一种有希望的疾病改善治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信