A Pressure Decompression Model-Based Finite Element Approach for Efficient Dynamic Fracture Analysis in CO2 Pipelines

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Ying Zhen, Yuguang Cao, Fagen Li, Wenwen Li, Guiyi Wu
{"title":"A Pressure Decompression Model-Based Finite Element Approach for Efficient Dynamic Fracture Analysis in CO2 Pipelines","authors":"Ying Zhen,&nbsp;Yuguang Cao,&nbsp;Fagen Li,&nbsp;Wenwen Li,&nbsp;Guiyi Wu","doi":"10.1111/ffe.70039","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Running fractures represent the most catastrophic failure mode in CO<sub>2</sub> pipelines. Traditional engineering methods for crack prediction have proven non-conservative, while existing fluid–structure interaction (FSI) models suffer from computational inefficiency. This study proposes a novel finite element simulation method based on an innovative three-dimensional pressure decompression model that effectively characterizes CO<sub>2</sub>'s unique thermodynamic behavior during pipeline fracture. The methodology involves three phases: establishing a simplified yet physically accurate pressure decompression model through systematic analysis of experimental data; validating the approach through full-scale burst tests, demonstrating superior computational efficiency compared to conventional FSI methods while maintaining high accuracy; and conducting comparative analyses that reveal fundamental differences between CO<sub>2</sub> and natural gas pipeline fracture behavior, including larger crack-tip opening angles and more extensive plastic deformation in CO<sub>2</sub> pipelines. These findings advance understanding of CO<sub>2</sub> pipeline fracture mechanisms and provide an efficient computational framework for parametric studies essential for pipeline safety design.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 10","pages":"4245-4258"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70039","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Running fractures represent the most catastrophic failure mode in CO2 pipelines. Traditional engineering methods for crack prediction have proven non-conservative, while existing fluid–structure interaction (FSI) models suffer from computational inefficiency. This study proposes a novel finite element simulation method based on an innovative three-dimensional pressure decompression model that effectively characterizes CO2's unique thermodynamic behavior during pipeline fracture. The methodology involves three phases: establishing a simplified yet physically accurate pressure decompression model through systematic analysis of experimental data; validating the approach through full-scale burst tests, demonstrating superior computational efficiency compared to conventional FSI methods while maintaining high accuracy; and conducting comparative analyses that reveal fundamental differences between CO2 and natural gas pipeline fracture behavior, including larger crack-tip opening angles and more extensive plastic deformation in CO2 pipelines. These findings advance understanding of CO2 pipeline fracture mechanisms and provide an efficient computational framework for parametric studies essential for pipeline safety design.

基于减压模型的CO2管道动态断裂有限元分析方法
运行裂缝是二氧化碳管道中最具灾难性的失效模式。传统的工程裂缝预测方法已被证明具有非保守性,而现有的流固耦合模型存在计算效率低下的问题。本研究提出了一种新颖的有限元模拟方法,该方法基于一种创新的三维压力减压模型,有效地表征了管道破裂过程中CO2独特的热力学行为。该方法分为三个阶段:通过系统分析实验数据,建立简化且物理精确的减压模型;通过全尺寸爆破测试验证了该方法,与传统FSI方法相比,该方法的计算效率更高,同时保持了高精度;对比分析,揭示了CO2管道与天然气管道断裂行为的根本差异,CO2管道裂纹尖端张开角度更大,塑性变形范围更广。这些发现促进了对二氧化碳管道断裂机制的理解,并为管道安全设计所需的参数研究提供了有效的计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信