AI Algorithm for Lung Adenocarcinoma Pattern Quantification (PATQUANT): International Validation and Advanced Risk Stratification Superior to Conventional Grading

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
MedComm Pub Date : 2025-09-08 DOI:10.1002/mco2.70380
Yuan Wang, Kris Lami, Waleed Ahmad, Simon Schallenberg, Andrey Bychkov, Yuanzi Ye, Danny Jonigk, Xiaoya Zhu, Sofia Campelos, Anne Schultheis, Matthias Heldwein, Alexander Quaas, Ales Ryska, Andre L. Moreira, Junya Fukuoka, Reinhard Büttner, Yuri Tolkach
{"title":"AI Algorithm for Lung Adenocarcinoma Pattern Quantification (PATQUANT): International Validation and Advanced Risk Stratification Superior to Conventional Grading","authors":"Yuan Wang,&nbsp;Kris Lami,&nbsp;Waleed Ahmad,&nbsp;Simon Schallenberg,&nbsp;Andrey Bychkov,&nbsp;Yuanzi Ye,&nbsp;Danny Jonigk,&nbsp;Xiaoya Zhu,&nbsp;Sofia Campelos,&nbsp;Anne Schultheis,&nbsp;Matthias Heldwein,&nbsp;Alexander Quaas,&nbsp;Ales Ryska,&nbsp;Andre L. Moreira,&nbsp;Junya Fukuoka,&nbsp;Reinhard Büttner,&nbsp;Yuri Tolkach","doi":"10.1002/mco2.70380","DOIUrl":null,"url":null,"abstract":"<p>The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists. Several independent test datasets and 13 expert pathologists were involved in validation. Five large, multinational cohorts of resectable LUAD (patient <i>n</i> = 1120) were analyzed concerning prognostic value. PATQUANT demonstrated excellent pattern segmentation/classification accuracy and outperformed 8 out of 13 pathologists. The prognostic study revealed a distinct prognostic profile for the complex glandular pattern. While all contemporary grading systems had prognostic value, the predominant pattern-based and simplified IASLC systems were superior. We propose and validate two new, fully explainable grading principles, providing fine-grained, statistically independent patient risk stratification. We developed a fully automated, robust AI tool for pattern analysis/quantification that surpasses the performance of experienced pathologists. Additionally, we demonstrate the excellent prognostic capabilities of two new grading approaches that outperform traditional grading methods. We make our extensive agreement dataset publicly available to advance the developments in the field.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 9","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70380","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists. Several independent test datasets and 13 expert pathologists were involved in validation. Five large, multinational cohorts of resectable LUAD (patient n = 1120) were analyzed concerning prognostic value. PATQUANT demonstrated excellent pattern segmentation/classification accuracy and outperformed 8 out of 13 pathologists. The prognostic study revealed a distinct prognostic profile for the complex glandular pattern. While all contemporary grading systems had prognostic value, the predominant pattern-based and simplified IASLC systems were superior. We propose and validate two new, fully explainable grading principles, providing fine-grained, statistically independent patient risk stratification. We developed a fully automated, robust AI tool for pattern analysis/quantification that surpasses the performance of experienced pathologists. Additionally, we demonstrate the excellent prognostic capabilities of two new grading approaches that outperform traditional grading methods. We make our extensive agreement dataset publicly available to advance the developments in the field.

Abstract Image

肺腺癌模式量化(PATQUANT)的人工智能算法:国际验证和先进的风险分层优于传统分级
肺腺癌(LUAD)的形态学模式被认为具有预后意义,关于最佳分级策略的争论正在进行中。本研究旨在开发一种临床级的、完全定量的、自动化的模式分类/量化工具(PATQUANT),以评估现有的分级策略,并确定最佳的分级系统。PATQUANT是在高质量的数据集上训练的,由病理学专家手工注释。几个独立的测试数据集和13名专家病理学家参与验证。分析了5个可切除LUAD的大型跨国队列(患者n = 1120)的预后价值。PATQUANT表现出优异的模式分割/分类准确性,优于13名病理学家中的8名。预后研究揭示了复杂腺体模式的独特预后概况。虽然所有当代分级系统都具有预测价值,但主要的基于模式和简化的IASLC系统更优越。我们提出并验证两个新的,完全可解释的分级原则,提供细粒度,统计独立的患者风险分层。我们开发了一种全自动、强大的人工智能工具,用于模式分析/量化,其性能超过了经验丰富的病理学家。此外,我们证明了两种新的评分方法的出色的预后能力,优于传统的评分方法。我们公开了我们广泛的协议数据集,以促进该领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信