Subashini R, MD Tameem Tabbasum, Dharshan AH, Shakti Varsha S
{"title":"Development of collagen-based hydrogel derived from allicin-silver nanoparticles for wound healing","authors":"Subashini R, MD Tameem Tabbasum, Dharshan AH, Shakti Varsha S","doi":"10.1007/s00114-025-02017-8","DOIUrl":null,"url":null,"abstract":"<div><p>Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles. The allicin is extracted from <i>Allium sativum</i>. The hydrogel demonstrated wound healing efficacy by achieving full closure within 72 h in an in vitro scratch wound assay on Vero cells. The antimicrobial activity of the hydrogel was confirmed against Gram-positive bacteria with zone of inhibition values of 14 mm for <i>Staphylococcus aureus</i> at a concentration of 1000 μg/ml. Cytotoxicity studies on Vero cells, reported significantly low cytotoxicity with 98.11% at a concentration of 7.8 μg/ml indicating its biocompatibility. Zeta potential measurement revealed good stability of the silver nanoparticles with a value of − 27.8 mV. The swelling degree of the hydrogel reached up to 6.11 indicating its capacity to maintain moisture while wound repairing. Altogether, these findings suggests that this biomaterial may represent a promising replacement to wound repairing treatments. Future research focusing in vivo studies could lay a pathway for clinical applications in regenerative medicine.\n</p></div>","PeriodicalId":794,"journal":{"name":"The Science of Nature","volume":"112 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Science of Nature","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s00114-025-02017-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles. The allicin is extracted from Allium sativum. The hydrogel demonstrated wound healing efficacy by achieving full closure within 72 h in an in vitro scratch wound assay on Vero cells. The antimicrobial activity of the hydrogel was confirmed against Gram-positive bacteria with zone of inhibition values of 14 mm for Staphylococcus aureus at a concentration of 1000 μg/ml. Cytotoxicity studies on Vero cells, reported significantly low cytotoxicity with 98.11% at a concentration of 7.8 μg/ml indicating its biocompatibility. Zeta potential measurement revealed good stability of the silver nanoparticles with a value of − 27.8 mV. The swelling degree of the hydrogel reached up to 6.11 indicating its capacity to maintain moisture while wound repairing. Altogether, these findings suggests that this biomaterial may represent a promising replacement to wound repairing treatments. Future research focusing in vivo studies could lay a pathway for clinical applications in regenerative medicine.
期刊介绍:
The Science of Nature - Naturwissenschaften - is Springer''s flagship multidisciplinary science journal. The journal is dedicated to the fast publication and global dissemination of high-quality research and invites papers, which are of interest to the broader community in the biological sciences. Contributions from the chemical, geological, and physical sciences are welcome if contributing to questions of general biological significance. Particularly welcomed are contributions that bridge between traditionally isolated areas and attempt to increase the conceptual understanding of systems and processes that demand an interdisciplinary approach.