{"title":"An efficient wireless sensor node for autonomous sensing in the ISM band","authors":"Naveed, Jeff Dix","doi":"10.1007/s10470-025-02497-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a radio frequency powered wireless sensor node (WSN) implemented in 22-nm FD-SOI technology, designed for autonomous operation in the ISM band. The sensor node harvests energy from a dedicated 915 MHz radio frequency (RF) source and generates a 2.44 GHz carrier signal for data transmission. The proposed design integrates a high-efficiency RF rectifier utilizing ultra-low-power diode-based rectification and SOI MOSFET back-plate connections, enhancing energy conversion efficiency and sensitivity. A nanowatt-level power management unit (PMU) ensures stable operation with minimal power overhead. The wireless transmission module employs a DLL-based XOR frequency synthesizer with an improved duty cycle correction circuit, achieving low-power, high-precision RF carrier generation. Operating at an RF input power sensitivity as low as − 25 dBm, the WSN can function effectively up to 12 m from the power source. Experimental results demonstrate a peak power conversion efficiency (PCE) of 57% at − 14 dBm and 28% at − 25 dBm, with a maximum input tolerance of 0 dBm to prevent device breakdown. Using On–Off Keying (OOK) modulation, the transmitter outputs − 3.8 dBm power with 55% power efficiency via a switching power amplifier. The synthesizer and power amplifier consume 160 µW and 500 µW, respectively. Occupying a 0.17 mm<sup>2</sup> active die area, this design offers an area-efficient, sustainable, and cost-effective solution for diverse remote sensing applications.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02497-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a radio frequency powered wireless sensor node (WSN) implemented in 22-nm FD-SOI technology, designed for autonomous operation in the ISM band. The sensor node harvests energy from a dedicated 915 MHz radio frequency (RF) source and generates a 2.44 GHz carrier signal for data transmission. The proposed design integrates a high-efficiency RF rectifier utilizing ultra-low-power diode-based rectification and SOI MOSFET back-plate connections, enhancing energy conversion efficiency and sensitivity. A nanowatt-level power management unit (PMU) ensures stable operation with minimal power overhead. The wireless transmission module employs a DLL-based XOR frequency synthesizer with an improved duty cycle correction circuit, achieving low-power, high-precision RF carrier generation. Operating at an RF input power sensitivity as low as − 25 dBm, the WSN can function effectively up to 12 m from the power source. Experimental results demonstrate a peak power conversion efficiency (PCE) of 57% at − 14 dBm and 28% at − 25 dBm, with a maximum input tolerance of 0 dBm to prevent device breakdown. Using On–Off Keying (OOK) modulation, the transmitter outputs − 3.8 dBm power with 55% power efficiency via a switching power amplifier. The synthesizer and power amplifier consume 160 µW and 500 µW, respectively. Occupying a 0.17 mm2 active die area, this design offers an area-efficient, sustainable, and cost-effective solution for diverse remote sensing applications.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.