Unleashing the ultrasonic frequency as a preparative parameter in tailoring the surface morphology and hence charge storage in Co3O4:MnO2@CoMnO3 composite flexible electrodes for supercapacitors

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. V. Thakur, S. G. Malpure, Manjunath Nookala Krishnamurthy
{"title":"Unleashing the ultrasonic frequency as a preparative parameter in tailoring the surface morphology and hence charge storage in Co3O4:MnO2@CoMnO3 composite flexible electrodes for supercapacitors","authors":"A. V. Thakur,&nbsp;S. G. Malpure,&nbsp;Manjunath Nookala Krishnamurthy","doi":"10.1186/s11671-025-04349-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of Co<sub>3</sub>O<sub>4</sub>:MnO<sub>2</sub>@CoMnO<sub>3</sub> composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0–2.5 MHz), a significant modulation in surface architecture from dispersed nanoflakes to densely packed marigold-like structures was achieved. Field emission scanning electron microscopy (FESEM) and contact angle analysis confirmed improved surface ordering and wettability with increasing frequency. Electrochemical analyses demonstrated that electrodes fabricated at 2.5 MHz (F4) exhibited the highest specific capacitance (SC) of 722.27 Fg<sup>−1</sup> at 2 mVs<sup>−1</sup>, attributable to enhanced electroactive surface area and reduced ion diffusion resistance. The symmetric supercapacitor device (SSD) assembled using these electrodes achieved SC of 840.35 Fg<sup>−1</sup>, alongside excellent cycling stability, retaining 90.49% of its initial capacitance after 3000 cycles. These results highlight the efficacy of ultrasonic modulation in tailoring nanostructured electrode surfaces for next-generation energy storage devices.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04349-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04349-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of Co3O4:MnO2@CoMnO3 composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0–2.5 MHz), a significant modulation in surface architecture from dispersed nanoflakes to densely packed marigold-like structures was achieved. Field emission scanning electron microscopy (FESEM) and contact angle analysis confirmed improved surface ordering and wettability with increasing frequency. Electrochemical analyses demonstrated that electrodes fabricated at 2.5 MHz (F4) exhibited the highest specific capacitance (SC) of 722.27 Fg−1 at 2 mVs−1, attributable to enhanced electroactive surface area and reduced ion diffusion resistance. The symmetric supercapacitor device (SSD) assembled using these electrodes achieved SC of 840.35 Fg−1, alongside excellent cycling stability, retaining 90.49% of its initial capacitance after 3000 cycles. These results highlight the efficacy of ultrasonic modulation in tailoring nanostructured electrode surfaces for next-generation energy storage devices.

释放超声波频率作为制备参数,在Co3O4:MnO2@CoMnO3超级电容器复合柔性电极中定制表面形态,从而实现电荷存储
在这项研究中,我们研究了超声辅助化学浴沉积(UCBD)过程中超声波频率对超级电容器用Co3O4:MnO2@CoMnO3复合柔性电极表面形貌和电化学性能的影响。通过系统地改变超声波频率(1.0-2.5 MHz),实现了表面结构从分散的纳米片到密集排列的万寿菊状结构的显著调制。场发射扫描电镜(FESEM)和接触角分析证实,随着频率的增加,表面有序性和润湿性得到改善。电化学分析表明,在2.5 MHz (F4)下制作的电极在2 mv−1时具有最高的722.27 Fg−1比电容(SC),这是由于电活性表面积的增加和离子扩散阻力的降低。使用这些电极组装的对称超级电容器器件(SSD)获得了840.35 Fg−1的SC,并且具有出色的循环稳定性,在3000次循环后保持了90.49%的初始电容。这些结果突出了超声波调制在定制下一代储能器件纳米结构电极表面方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信