Experimentation and Numerical Modeling of Hybrid Bio-composites and Synthetic Composites by Varying Stacking Sequence

IF 2.3 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Gurabvaiah Punugupati, Gagan Sharma, Grandhi Prasanth, Hymavathi Madivada, C. S. P. Rao
{"title":"Experimentation and Numerical Modeling of Hybrid Bio-composites and Synthetic Composites by Varying Stacking Sequence","authors":"Gurabvaiah Punugupati,&nbsp;Gagan Sharma,&nbsp;Grandhi Prasanth,&nbsp;Hymavathi Madivada,&nbsp;C. S. P. Rao","doi":"10.1007/s12221-025-01110-z","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of sustainable and biodegradable materials in composite manufacturing is gaining prominence due to environmental concerns and the need for eco-friendly alternatives. This study investigates the mechanical performance of hybrid bio-composites integrating natural and synthetic fibers, demonstrating their potential to balance sustainability and structural integrity. Experimental evaluations, including tensile, flexural, and inter-laminar shear strength (ILSS) tests, reveal the influence of fiber composition and stacking sequences on mechanical properties. Pure E-glass fiber composites exhibited the highest tensile strength (88 MPa), while hybrid Glass–Glass–Jute (GGJ) composites achieved 83 MPa, validating the reinforcement benefits of glass fibers. Jute-based hybrids, such as Jute–Jute–Glass (JJG), displayed enhanced flexural strength (52 MPa) compared to pure jute composites (41 MPa). ILSS testing indicated superior inter-laminar bonding in natural fiber composites, with Sisal–Sisal–Sisal (SSS) reaching 11 MPa. Additionally, numerical simulations using ABAQUS closely aligned with experimental data, confirming the reliability of computational modeling. These findings highlight the viability of hybrid bio-composites in mechanical applications, offering an environmentally friendly alternative without compromising performance.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 10","pages":"4537 - 4548"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-01110-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of sustainable and biodegradable materials in composite manufacturing is gaining prominence due to environmental concerns and the need for eco-friendly alternatives. This study investigates the mechanical performance of hybrid bio-composites integrating natural and synthetic fibers, demonstrating their potential to balance sustainability and structural integrity. Experimental evaluations, including tensile, flexural, and inter-laminar shear strength (ILSS) tests, reveal the influence of fiber composition and stacking sequences on mechanical properties. Pure E-glass fiber composites exhibited the highest tensile strength (88 MPa), while hybrid Glass–Glass–Jute (GGJ) composites achieved 83 MPa, validating the reinforcement benefits of glass fibers. Jute-based hybrids, such as Jute–Jute–Glass (JJG), displayed enhanced flexural strength (52 MPa) compared to pure jute composites (41 MPa). ILSS testing indicated superior inter-laminar bonding in natural fiber composites, with Sisal–Sisal–Sisal (SSS) reaching 11 MPa. Additionally, numerical simulations using ABAQUS closely aligned with experimental data, confirming the reliability of computational modeling. These findings highlight the viability of hybrid bio-composites in mechanical applications, offering an environmentally friendly alternative without compromising performance.

混合生物复合材料与合成复合材料不同堆叠顺序的实验与数值模拟
由于环境问题和对生态友好型替代品的需求,在复合材料制造中利用可持续和可生物降解的材料日益突出。本研究考察了天然和合成纤维混合生物复合材料的机械性能,展示了其平衡可持续性和结构完整性的潜力。实验评估,包括拉伸、弯曲和层间剪切强度(ILSS)测试,揭示了纤维成分和堆叠顺序对力学性能的影响。纯e -玻璃纤维复合材料的拉伸强度最高(88 MPa),而混合玻璃-玻璃-黄麻(GGJ)复合材料的拉伸强度达到83 MPa,验证了玻璃纤维的增强效果。与纯黄麻复合材料(41 MPa)相比,黄麻基复合材料(如黄麻-黄麻玻璃(JJG))的抗弯强度(52 MPa)有所提高。ILSS测试表明,天然纤维复合材料的层间粘合性能较好,其中剑麻-剑麻-剑麻(SSS)达到11 MPa。此外,利用ABAQUS进行的数值模拟与实验数据吻合较好,验证了计算模型的可靠性。这些发现强调了混合生物复合材料在机械应用中的可行性,提供了一种不影响性能的环保替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信