Kexin Chen, Yinchun Hu, Yan Zhang, Zhibin Jin, Qi Lei, Yongcun Li, Qiong Zhou, Yingying Wang
{"title":"Interfacial Bonding and Mechanical Properties of Aramid Fiber/Unsaturated Polyester Resin Composites Reinforced by Physically Anchoring-Chemically Bonding Gradient Interfaces","authors":"Kexin Chen, Yinchun Hu, Yan Zhang, Zhibin Jin, Qi Lei, Yongcun Li, Qiong Zhou, Yingying Wang","doi":"10.1007/s12221-025-01108-7","DOIUrl":null,"url":null,"abstract":"<div><p>Aramid fiber/unsaturated polyester resin (AF/UP) composites suffer from weak interfacial adhesion which limits their applications in demanding environment. This study proposes a synergistic modification strategy utilizing polydopamine (PDA) and <span>\\(\\gamma\\)</span>-methacryloxypropyltrimethoxysilane (KH570) which constructs a dual-mechanism interface combining mechanical interlocking and covalent bonding. PDA layer was first formed on AF surface via dopamine (DA) oxidative self-polymerization. KH570 formed covalent bonds with PDA layer to yield KH570–PDA–AF. Multi-scale characterization revealed that PDA and KH570 were successfully grafted on AF surface. KH570–PDA–AF/UP composite achieved an interfacial strength of 35.03 MPa (a 57.4% enhancement) due to copolymerization between KH570 and UP. The tensile strength of KH570–PDA–AF/UP reached 1054.86 MPa (a 47.62% increase) and Young's modulus was 23.64 GPa (a 135.93% enhancement) compared to AF/UP. Dynamic mechanical analysis showed reduced loss modulus above 76 °C which signified optimized interfacial energy dissipation mechanisms. These results manifest that PDA–KH570 synergistic modification strategy effectively optimizes interfacial bonding of AF/UP which offers a novel approach for designing high-performance fiber-reinforced composites with both theoretical innovation and engineering applicability.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 10","pages":"4527 - 4536"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-01108-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Aramid fiber/unsaturated polyester resin (AF/UP) composites suffer from weak interfacial adhesion which limits their applications in demanding environment. This study proposes a synergistic modification strategy utilizing polydopamine (PDA) and \(\gamma\)-methacryloxypropyltrimethoxysilane (KH570) which constructs a dual-mechanism interface combining mechanical interlocking and covalent bonding. PDA layer was first formed on AF surface via dopamine (DA) oxidative self-polymerization. KH570 formed covalent bonds with PDA layer to yield KH570–PDA–AF. Multi-scale characterization revealed that PDA and KH570 were successfully grafted on AF surface. KH570–PDA–AF/UP composite achieved an interfacial strength of 35.03 MPa (a 57.4% enhancement) due to copolymerization between KH570 and UP. The tensile strength of KH570–PDA–AF/UP reached 1054.86 MPa (a 47.62% increase) and Young's modulus was 23.64 GPa (a 135.93% enhancement) compared to AF/UP. Dynamic mechanical analysis showed reduced loss modulus above 76 °C which signified optimized interfacial energy dissipation mechanisms. These results manifest that PDA–KH570 synergistic modification strategy effectively optimizes interfacial bonding of AF/UP which offers a novel approach for designing high-performance fiber-reinforced composites with both theoretical innovation and engineering applicability.
芳纶纤维/不饱和聚酯树脂(AF/UP)复合材料界面附着力弱,限制了其在苛刻环境中的应用。本研究提出了一种利用聚多巴胺(PDA)和\(\gamma\) -甲基丙烯氧基丙基三甲氧基硅烷(KH570)的协同改性策略,构建了一个结合机械联锁和共价键的双机制界面。首先在AF表面通过多巴胺(DA)氧化自聚合形成PDA层。KH570与PDA层形成共价键,生成KH570 - PDA - af。多尺度表征表明,PDA和KH570在AF表面成功接枝。KH570-PDA-AF /UP复合材料的界面强度为35.03 MPa% enhancement) due to copolymerization between KH570 and UP. The tensile strength of KH570–PDA–AF/UP reached 1054.86 MPa (a 47.62% increase) and Young's modulus was 23.64 GPa (a 135.93% enhancement) compared to AF/UP. Dynamic mechanical analysis showed reduced loss modulus above 76 °C which signified optimized interfacial energy dissipation mechanisms. These results manifest that PDA–KH570 synergistic modification strategy effectively optimizes interfacial bonding of AF/UP which offers a novel approach for designing high-performance fiber-reinforced composites with both theoretical innovation and engineering applicability.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers