Amena Salim, Saleem Khan, Moksyaraj Bhoi, Amaresh Mishra, Ganesh D. Sharma, Ritu Vishnoi and Rahul Singhal
{"title":"NiO–MnO2 and NiO–CuO anchored on rGO as ternary electrode materials for energy storage applications","authors":"Amena Salim, Saleem Khan, Moksyaraj Bhoi, Amaresh Mishra, Ganesh D. Sharma, Ritu Vishnoi and Rahul Singhal","doi":"10.1039/D4NJ05462H","DOIUrl":null,"url":null,"abstract":"<p >The development of new electrode materials is critical for advancing supercapacitor technologies. This study presents the design and synthesis of metal oxide-based hybrid capacitive nanocomposites comprising NiO–MnO<small><sub>2</sub></small> and NiO–CuO ternary hybrids anchored on reduced graphene oxide (rGO) <em>via</em> a green hydrothermal method as advanced electrode materials for high-performance supercapacitors. XRD analysis results revealed the successful formation of binary and ternary metal oxide-based composites with cubic NiO, monoclinic CuO and tetragonal MnO<small><sub>2</sub></small>. The unique morphology of MnO<small><sub>2</sub></small> nanorods and NiO nanoflowers, coupled with the conductive rGO framework, facilitates efficient redox reactions. The presence of rGO within the composites facilitates rapid electron transport, mitigates particle agglomeration, and prevents volumetric and structural degradation during charge–discharge cycles. Notably, NiO/MnO<small><sub>2</sub></small>/rGO and NiO/CuO/rGO as ternary composite electrodes achieved specific capacitances of 107 F g<small><sup>−1</sup></small> and 413 F g<small><sup>−1</sup></small>, respectively, at a scan rate of 5 mV s<small><sup>−1</sup></small> within a 0.6 V potential window. A fabricated NiO/MnO<small><sub>2</sub></small>/rGO‖rGO all-solid-state asymmetric supercapacitor device using PVA–KOH as a solid-state gel electrolyte delivered a specific and areal capacitance of 1866.7 mF g<small><sup>−1</sup></small> and 10.82 mF cm<small><sup>−2</sup></small>, respectively, at 10 mA g<small><sup>−1</sup></small>. Furthermore, the device delivered an energy and power density of 75.6 mWh kg<small><sup>−1</sup></small> (438.5 μWh cm<small><sup>−2</sup></small>) and 17500 mW kg<small><sup>−1</sup></small> (39.5 mW cm<small><sup>−2</sup></small>), respectively, at 10 mA g<small><sup>−1</sup></small> and 74% capacity retention after continuous charge–discharge for 3000 cycles.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 35","pages":" 15061-15076"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05462h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of new electrode materials is critical for advancing supercapacitor technologies. This study presents the design and synthesis of metal oxide-based hybrid capacitive nanocomposites comprising NiO–MnO2 and NiO–CuO ternary hybrids anchored on reduced graphene oxide (rGO) via a green hydrothermal method as advanced electrode materials for high-performance supercapacitors. XRD analysis results revealed the successful formation of binary and ternary metal oxide-based composites with cubic NiO, monoclinic CuO and tetragonal MnO2. The unique morphology of MnO2 nanorods and NiO nanoflowers, coupled with the conductive rGO framework, facilitates efficient redox reactions. The presence of rGO within the composites facilitates rapid electron transport, mitigates particle agglomeration, and prevents volumetric and structural degradation during charge–discharge cycles. Notably, NiO/MnO2/rGO and NiO/CuO/rGO as ternary composite electrodes achieved specific capacitances of 107 F g−1 and 413 F g−1, respectively, at a scan rate of 5 mV s−1 within a 0.6 V potential window. A fabricated NiO/MnO2/rGO‖rGO all-solid-state asymmetric supercapacitor device using PVA–KOH as a solid-state gel electrolyte delivered a specific and areal capacitance of 1866.7 mF g−1 and 10.82 mF cm−2, respectively, at 10 mA g−1. Furthermore, the device delivered an energy and power density of 75.6 mWh kg−1 (438.5 μWh cm−2) and 17500 mW kg−1 (39.5 mW cm−2), respectively, at 10 mA g−1 and 74% capacity retention after continuous charge–discharge for 3000 cycles.
新型电极材料的开发是推进超级电容器技术发展的关键。本研究通过绿色水热法设计和合成了基于金属氧化物的杂化电容性纳米复合材料,该材料由NiO-MnO2和NiO-CuO三元杂化物锚定在还原氧化石墨烯(rGO)上,作为高性能超级电容器的先进电极材料。XRD分析结果表明,成功制备了立方NiO、单斜CuO和四方MnO2的二元和三元金属氧化物基复合材料。MnO2纳米棒和NiO纳米花的独特形态,加上导电的还原氧化石墨烯框架,促进了高效的氧化还原反应。复合材料中还原氧化石墨烯的存在促进了电子的快速传递,减轻了颗粒团聚,并防止了充放电循环过程中体积和结构的退化。值得注意的是,在0.6 V电位窗口内,当扫描速率为5 mV s−1时,NiO/MnO2/rGO和NiO/CuO/rGO三元复合电极的比电容分别为107 F g−1和413 F g−1。采用PVA-KOH作为固态凝胶电解质制备的NiO/MnO2/rGO‖rGO全固态非对称超级电容器器件在10 mA g - 1时的比电容和面电容分别为1866.7 mF g - 1和10.82 mF cm - 2。此外,该器件在10 mA g - 1下的能量和功率密度分别为75.6 mWh kg - 1 (438.5 μWh cm - 2)和17500 mW kg - 1 (39.5 mW cm - 2),在连续充放电3000次后容量保持率为74%。