Single atom embedded ZnO monolayers as bifunctional electrocatalysts for the ORR/OER: a machine learning-assisted DFT study†

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyao Wang, Dongxu Jiao and Jingxiang Zhao
{"title":"Single atom embedded ZnO monolayers as bifunctional electrocatalysts for the ORR/OER: a machine learning-assisted DFT study†","authors":"Siyao Wang, Dongxu Jiao and Jingxiang Zhao","doi":"10.1039/D5QM00437C","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalysts that exhibit bifunctional activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are essential for advancing the sustainability of clean energy. Using density functional theory (DFT) computations, we systematically investigated the catalytic performance of 17 transition metal single atoms embedded in two-dimensional ZnO for the ORR and OER. Our results indicate that these single atoms strongly interact with ZnO, forming stable single-atom catalysts (SACs). Among them, Ni–ZnO is identified as a promising bifunctional ORR/OER catalyst due to its low overpotentials (<em>η</em><small><sup>ORR</sup></small> = 0.42 V, <em>η</em><small><sup>OER</sup></small> = 0.54 V). Furthermore, employing the constant potential method, the <em>η</em><small><sup>ORR</sup></small> (0.32 V) and <em>η</em><small><sup>OER</sup></small> (0.31 V) values can be further reduced under acidic conditions. Machine learning (ML) analysis revealed that the number of outermost electron (<em>N</em><small><sub>e</sub></small>) and first ionization energy (<em>E</em><small><sub>i</sub></small>) are the two primary descriptors governing OER activity, while ORR activity is mainly influenced by <em>E</em><small><sub>i</sub></small> and the atomic radius (<em>R</em><small><sub>TM</sub></small>). This study provides theoretical guidance for designing low-cost, efficient bifunctional ORR/OER electrocatalysts and demonstrates the potential of ML in elucidating the relationship between intrinsic catalyst properties and their catalytic activity.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 18","pages":" 2784-2793"},"PeriodicalIF":6.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00437c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalysts that exhibit bifunctional activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are essential for advancing the sustainability of clean energy. Using density functional theory (DFT) computations, we systematically investigated the catalytic performance of 17 transition metal single atoms embedded in two-dimensional ZnO for the ORR and OER. Our results indicate that these single atoms strongly interact with ZnO, forming stable single-atom catalysts (SACs). Among them, Ni–ZnO is identified as a promising bifunctional ORR/OER catalyst due to its low overpotentials (ηORR = 0.42 V, ηOER = 0.54 V). Furthermore, employing the constant potential method, the ηORR (0.32 V) and ηOER (0.31 V) values can be further reduced under acidic conditions. Machine learning (ML) analysis revealed that the number of outermost electron (Ne) and first ionization energy (Ei) are the two primary descriptors governing OER activity, while ORR activity is mainly influenced by Ei and the atomic radius (RTM). This study provides theoretical guidance for designing low-cost, efficient bifunctional ORR/OER electrocatalysts and demonstrates the potential of ML in elucidating the relationship between intrinsic catalyst properties and their catalytic activity.

Abstract Image

单原子嵌入ZnO单层作为ORR/OER双功能电催化剂:机器学习辅助DFT研究
在氧还原反应(ORR)和氧析反应(OER)中表现出双功能活性的电催化剂对于促进清洁能源的可持续性至关重要。利用密度泛函理论(DFT)计算,系统地研究了17个过渡金属单原子包埋在二维ZnO中的ORR和OER的催化性能。结果表明,这些单原子与ZnO发生强烈的相互作用,形成稳定的单原子催化剂(SACs)。其中,Ni-ZnO因其低过电位(ηORR = 0.42 V, ηOER = 0.54 V)被认为是一种很有前途的双功能ORR/OER催化剂。此外,采用恒电位法,在酸性条件下可以进一步降低ηORR (0.32 V)和ηOER (0.31 V)值。机器学习(ML)分析表明,最外层电子数(Ne)和第一电离能(Ei)是控制OER活性的两个主要描述符,而ORR活性主要受Ei和原子半径(RTM)的影响。该研究为设计低成本、高效的双功能ORR/OER电催化剂提供了理论指导,并展示了ML在阐明催化剂内在性质与催化活性之间关系方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信