Mobile Edge Computing for AAV-Enabled Internet of Vehicles With NOMA: Delay Optimization and Performance Analysis

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dawei Wang;Hongyan Wang;Weichao Yang;Yixin He;Yi Jin;Li Li;Hongbo Zhao;Xiaoyang Li
{"title":"Mobile Edge Computing for AAV-Enabled Internet of Vehicles With NOMA: Delay Optimization and Performance Analysis","authors":"Dawei Wang;Hongyan Wang;Weichao Yang;Yixin He;Yi Jin;Li Li;Hongbo Zhao;Xiaoyang Li","doi":"10.1109/OJVT.2025.3596251","DOIUrl":null,"url":null,"abstract":"Autonomous aerial vehicles (AAVs) can effectively eliminate communication blind zones and establish line-of-sight links with ground vehicles by leveraging their flexible deployment capabilities. Motivated by the above, this paper employs an AAV as a mobile edge computing (MEC) server to provide task offloading services, based on which the non-orthogonal multiple access (NOMA) technology is used in AAV-enabled Internet of Vehicles (IoV). To reduce the MEC offloading delay, we propose a NOMA-enhanced MEC framework for AAV-enabled IoV. More explicitly, we formulate a total offloading delay minimization problem by optimizing the transmit power and the AAV position. To tackle the non-convex problem, we decouple it into two sub-problems: power allocation and AAV position optimization. Specifically, the power allocation is optimized via the successive convex optimization algorithm, and the AAV position is adjusted using the improved particle swarm optimization-genetic algorithm (PSO-GA). Then, we propose an iterative optimization algorithm to alternately iterate these two processes to find the optimal solution. Next, we analyze the achievable offloading probability of the NOMA-MEC scheme compared with the OMA-MEC scheme and derive its asymptotic expressions under high signal-to-noise ratio (SNR) conditions. Finally, simulation results indicate that the proposed scheme outperforms existing methods in reducing total offloading delay while validating the accuracy of performance analysis.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2317-2331"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11119075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119075/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous aerial vehicles (AAVs) can effectively eliminate communication blind zones and establish line-of-sight links with ground vehicles by leveraging their flexible deployment capabilities. Motivated by the above, this paper employs an AAV as a mobile edge computing (MEC) server to provide task offloading services, based on which the non-orthogonal multiple access (NOMA) technology is used in AAV-enabled Internet of Vehicles (IoV). To reduce the MEC offloading delay, we propose a NOMA-enhanced MEC framework for AAV-enabled IoV. More explicitly, we formulate a total offloading delay minimization problem by optimizing the transmit power and the AAV position. To tackle the non-convex problem, we decouple it into two sub-problems: power allocation and AAV position optimization. Specifically, the power allocation is optimized via the successive convex optimization algorithm, and the AAV position is adjusted using the improved particle swarm optimization-genetic algorithm (PSO-GA). Then, we propose an iterative optimization algorithm to alternately iterate these two processes to find the optimal solution. Next, we analyze the achievable offloading probability of the NOMA-MEC scheme compared with the OMA-MEC scheme and derive its asymptotic expressions under high signal-to-noise ratio (SNR) conditions. Finally, simulation results indicate that the proposed scheme outperforms existing methods in reducing total offloading delay while validating the accuracy of performance analysis.
基于NOMA的自动驾驶汽车互联网移动边缘计算:延迟优化和性能分析
自主飞行器(aav)利用其灵活的部署能力,可以有效地消除通信盲区,并与地面车辆建立视线联系。基于此,本文采用AAV作为移动边缘计算(MEC)服务器提供任务卸载服务,并在此基础上将非正交多址(NOMA)技术应用于支持AAV的车联网(IoV)中。为了减少MEC卸载延迟,我们提出了一个用于支持aav的IoV的noma增强MEC框架。更具体地说,我们通过优化发射功率和AAV位置,提出了总卸载延迟最小化问题。为了解决非凸问题,我们将其解耦为两个子问题:功率分配和AAV位置优化。其中,采用连续凸优化算法优化功率分配,采用改进粒子群优化-遗传算法(PSO-GA)调整AAV位置。然后,我们提出了一种迭代优化算法,交替迭代这两个过程以寻找最优解。其次,我们分析了NOMA-MEC方案与OMA-MEC方案的可实现卸载概率,并推导了其在高信噪比条件下的渐近表达式。最后,仿真结果表明,该方案在降低总卸载延迟方面优于现有方法,同时验证了性能分析的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信