{"title":"Computational investigation of mutations in PfCRT and PfDHFR proteins for emerging resistance of Plasmodium falciparum to antimalarial drugs","authors":"Sushruta Ghosh , Deepesh Joshi , Chandra Sekar Ponnusamy , Bhavani Sridharan , Mahesh Velusamy","doi":"10.1016/j.molbiopara.2025.111700","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of multidrug resistance in <em>Plasmodium falciparum</em> poses a serious threat to antimalarial treatment, particularly with growing resistance to artemisinin-based combination therapies (ACTs) and partner drugs like piperaquine. Mutations in key proteins, such as PfCRT (<em>P. falciparum</em> chloroquine resistance transporter) and PfDHFR (<em>P. falciparum</em> dihydrofolate reductase), play a critical role in this resistance. Understanding these molecular mechanisms is essential for the development of effective antimalarial therapies. This study aimed to investigate the structural and functional impact of polymorphisms on drug-target interactions and resistance mechanisms in <em>P. falciparum</em>. Molecular docking and molecular dynamics (MD) simulations were performed to analyze interactions of the mutated PfCRT and PfDHFR proteins with nine antimalarial drugs, including piperaquine. The PfCRT-K76A piperaquine complex strong binding affinity (-9.5 kcal/mol) with moderate structural deviation (0.970 ± 0.202 nm) and greater solvent accessibility (246.01 ± 6.135 nm²), suggesting favourable binding conditions. The PfDHFR-N51I–piperaquine complex showed even stronger binding (-10.8 kcal/mol) but higher structural fluctuation (RMSD: 4.491 ± 1.462 nm) and increased compactness (1.861 ± 0.029 nm), which may reflect restricted ligand accommodation and possible resistance. Overall, the findings provide valuable insights into how PfCRT and PfDHFR mutations contribute to drug resistance and establish a foundation for designing more effective antimalarial strategies. Future research should integrate experimental validation and explore additional resistance-associated mutations to develop targeted therapies for combating multidrug-resistant <em>P. falciparum</em>.</div></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"264 ","pages":"Article 111700"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685125000362","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of multidrug resistance in Plasmodium falciparum poses a serious threat to antimalarial treatment, particularly with growing resistance to artemisinin-based combination therapies (ACTs) and partner drugs like piperaquine. Mutations in key proteins, such as PfCRT (P. falciparum chloroquine resistance transporter) and PfDHFR (P. falciparum dihydrofolate reductase), play a critical role in this resistance. Understanding these molecular mechanisms is essential for the development of effective antimalarial therapies. This study aimed to investigate the structural and functional impact of polymorphisms on drug-target interactions and resistance mechanisms in P. falciparum. Molecular docking and molecular dynamics (MD) simulations were performed to analyze interactions of the mutated PfCRT and PfDHFR proteins with nine antimalarial drugs, including piperaquine. The PfCRT-K76A piperaquine complex strong binding affinity (-9.5 kcal/mol) with moderate structural deviation (0.970 ± 0.202 nm) and greater solvent accessibility (246.01 ± 6.135 nm²), suggesting favourable binding conditions. The PfDHFR-N51I–piperaquine complex showed even stronger binding (-10.8 kcal/mol) but higher structural fluctuation (RMSD: 4.491 ± 1.462 nm) and increased compactness (1.861 ± 0.029 nm), which may reflect restricted ligand accommodation and possible resistance. Overall, the findings provide valuable insights into how PfCRT and PfDHFR mutations contribute to drug resistance and establish a foundation for designing more effective antimalarial strategies. Future research should integrate experimental validation and explore additional resistance-associated mutations to develop targeted therapies for combating multidrug-resistant P. falciparum.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.