{"title":"Envy-freeness and maximum Nash welfare for mixed divisible and indivisible goods","authors":"Koichi Nishimura , Hanna Sumita","doi":"10.1016/j.mathsocsci.2025.102449","DOIUrl":null,"url":null,"abstract":"<div><div>We study fair allocation of resources consisting of both divisible and indivisible goods to agents with additive valuations. When only divisible or indivisible goods exist, it is known that an allocation that achieves the maximum Nash welfare (MNW) satisfies the classic fairness notions based on envy. Moreover, the literature shows the structures and characterizations of MNW allocations when valuations are binary and linear (i.e., divisible goods are homogeneous). In this paper, we show that when all agents’ valuations are binary linear, an MNW allocation for mixed goods satisfies the envy-freeness up to any good for mixed goods (EFXM). This notion is stronger than an existing one called envy-freeness for mixed goods (EFM), and our result generalizes the existing results for the case when only divisible or indivisible goods exist. When all agents’ valuations are binary over indivisible goods and identical over divisible goods (e.g., the divisible good is money), we extend the known characterization of an MNW allocation for indivisible goods to mixed goods, and also show that an MNW allocation satisfies EFXM. For the general additive valuations, we also provide a formal proof that an MNW allocation satisfies a weaker notion than EFM.</div></div>","PeriodicalId":51118,"journal":{"name":"Mathematical Social Sciences","volume":"138 ","pages":"Article 102449"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Social Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165489625000642","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study fair allocation of resources consisting of both divisible and indivisible goods to agents with additive valuations. When only divisible or indivisible goods exist, it is known that an allocation that achieves the maximum Nash welfare (MNW) satisfies the classic fairness notions based on envy. Moreover, the literature shows the structures and characterizations of MNW allocations when valuations are binary and linear (i.e., divisible goods are homogeneous). In this paper, we show that when all agents’ valuations are binary linear, an MNW allocation for mixed goods satisfies the envy-freeness up to any good for mixed goods (EFXM). This notion is stronger than an existing one called envy-freeness for mixed goods (EFM), and our result generalizes the existing results for the case when only divisible or indivisible goods exist. When all agents’ valuations are binary over indivisible goods and identical over divisible goods (e.g., the divisible good is money), we extend the known characterization of an MNW allocation for indivisible goods to mixed goods, and also show that an MNW allocation satisfies EFXM. For the general additive valuations, we also provide a formal proof that an MNW allocation satisfies a weaker notion than EFM.
期刊介绍:
The international, interdisciplinary journal Mathematical Social Sciences publishes original research articles, survey papers, short notes and book reviews. The journal emphasizes the unity of mathematical modelling in economics, psychology, political sciences, sociology and other social sciences.
Topics of particular interest include the fundamental aspects of choice, information, and preferences (decision science) and of interaction (game theory and economic theory), the measurement of utility, welfare and inequality, the formal theories of justice and implementation, voting rules, cooperative games, fair division, cost allocation, bargaining, matching, social networks, and evolutionary and other dynamics models.
Papers published by the journal are mathematically rigorous but no bounds, from above or from below, limits their technical level. All mathematical techniques may be used. The articles should be self-contained and readable by social scientists trained in mathematics.