DNA-inspired self-complementary architecture: Achieving stable decoupling of thermodynamic and optical properties in polyimides through orchestrated hydrogen bonding

IF 6.3 2区 化学 Q1 POLYMER SCIENCE
Yulin Li , Fen Zhao , Jianqiao Zhao , Yuxiang Lv , Xueheng Chen , Chunyan Yang , Fu Li , Guoli Tu
{"title":"DNA-inspired self-complementary architecture: Achieving stable decoupling of thermodynamic and optical properties in polyimides through orchestrated hydrogen bonding","authors":"Yulin Li ,&nbsp;Fen Zhao ,&nbsp;Jianqiao Zhao ,&nbsp;Yuxiang Lv ,&nbsp;Xueheng Chen ,&nbsp;Chunyan Yang ,&nbsp;Fu Li ,&nbsp;Guoli Tu","doi":"10.1016/j.eurpolymj.2025.114250","DOIUrl":null,"url":null,"abstract":"<div><div>DNA achieves the most<!--> <!-->stable molecular recognition and information storage system in<!--> <!-->nature by<!--> <!-->integrating structural<!--> <!-->artistry with functionality. Inspired by this, we developed a<!--> <!-->biomimetic strategy based on azaindole-modified diamines to construct<!--> <!-->self-complementary<!--> <!-->hydrogen bond networks in polyimides. This approach transforms conventional donor–acceptor chain stacking into donor–donor configurations. The DNA base-pairing-like molecular design significantly reduced the cutoff wavelengths in<!--> <!-->polyimide (&gt;35 nm blue shift), while<!--> <!-->maintaining excellent thermodynamic stability (Td<sup>5%</sup> &gt; 550 °C and CTE<sub>50-350°C</sub>: 15.4–33.6 ppm·K<sup>−1</sup>). The resulting materials exhibit exceptional electrical performance stability. The ketone-containing polyimide achieved outstanding breakdown strength (585.6 MV/m), while the ether-containing polyimide delivered high energy density (2.46 J/cm<sup>3</sup> at 350 MV/m with 85 % efficiency). This “geometric blocking-dynamic reinforcement” mechanism enables<!--> <!-->stable property decoupling in<!--> <!-->polyimides, providing a practical design strategy for high-performance polyimide materials with simultaneously enhanced optical transparency and thermomechanical properties for flexible optoelectronic applications.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"239 ","pages":"Article 114250"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725005385","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

DNA achieves the most stable molecular recognition and information storage system in nature by integrating structural artistry with functionality. Inspired by this, we developed a biomimetic strategy based on azaindole-modified diamines to construct self-complementary hydrogen bond networks in polyimides. This approach transforms conventional donor–acceptor chain stacking into donor–donor configurations. The DNA base-pairing-like molecular design significantly reduced the cutoff wavelengths in polyimide (>35 nm blue shift), while maintaining excellent thermodynamic stability (Td5% > 550 °C and CTE50-350°C: 15.4–33.6 ppm·K−1). The resulting materials exhibit exceptional electrical performance stability. The ketone-containing polyimide achieved outstanding breakdown strength (585.6 MV/m), while the ether-containing polyimide delivered high energy density (2.46 J/cm3 at 350 MV/m with 85 % efficiency). This “geometric blocking-dynamic reinforcement” mechanism enables stable property decoupling in polyimides, providing a practical design strategy for high-performance polyimide materials with simultaneously enhanced optical transparency and thermomechanical properties for flexible optoelectronic applications.

Abstract Image

dna启发的自互补结构:通过精心安排的氢键实现聚酰亚胺的热力学和光学性质的稳定解耦
DNA通过将结构艺术性与功能性相结合,实现了自然界中最稳定的分子识别和信息存储系统。受此启发,我们开发了一种基于叠氮多尔修饰二胺的仿生策略,在聚酰亚胺中构建自互补的氢键网络。该方法将传统的供体-受体链堆叠转变为供体-供体构型。类似DNA碱基配对的分子设计显著降低了聚酰亚胺中的截止波长(>;35 nm蓝移),同时保持了优异的热力学稳定性(Td5% >; 550°C和CTE50-350°C: 15.4-33.6 ppm·K−1)。所得材料表现出优异的电气性能稳定性。含酮的聚酰亚胺具有出色的击穿强度(585.6 MV/m),而含醚的聚酰亚胺具有较高的能量密度(在350 MV/m时,能量密度为2.46 J/cm3,效率为85%)。这种“几何阻塞-动态增强”机制使聚酰亚胺的性能稳定解耦,为高性能聚酰亚胺材料提供了一种实用的设计策略,同时增强了柔性光电应用的光学透明度和热机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信