Positive singular solutions of a certain elliptic PDE

IF 1.2 3区 数学 Q1 MATHEMATICS
Negar Mohammadnejad
{"title":"Positive singular solutions of a certain elliptic PDE","authors":"Negar Mohammadnejad","doi":"10.1016/j.jmaa.2025.130033","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the existence of positive singular solutions for a system of partial differential equations on a bounded domain<span><span><span>(1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>﹨</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>﹨</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>v</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mspace></mspace><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> We investigate the existence of positive singular solutions within <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, the unit ball centered at the origin in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, under the conditions <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mfrac><mrow><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn></math></span>. Additionally, we assume that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are non-negative, continuous functions satisfying <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Our system is an extension of the PDE studied by Aghajani et al. <span><span>[1]</span></span> under similar assumptions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130033"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008145","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the existence of positive singular solutions for a system of partial differential equations on a bounded domain(1){Δu=(1+κ1(x))|v|pinB1{0},Δv=(1+κ2(x))|u|pinB1{0},u=v=0onB1. We investigate the existence of positive singular solutions within B1, the unit ball centered at the origin in RN, under the conditions N3 and NN1<p<2. Additionally, we assume that κ1 and κ2 are non-negative, continuous functions satisfying κ1(0)=κ2(0)=0. Our system is an extension of the PDE studied by Aghajani et al. [1] under similar assumptions.
一类椭圆型偏微分方程的正奇异解
本文研究了一类偏微分方程系统在有界域(1){−Δu=(1+κ1(x))|∇v|pinB1\{0},−Δv=(1+κ2(x))|∇u|pinB1\{0},u=v=0on∂B1上正奇异解的存在性。在N≥3和NN−1<;p<;2条件下,研究了以RN原点为中心的单位球B1内正奇异解的存在性。另外,我们假设κ1和κ2是非负的连续函数,满足κ1(0)=κ2(0)=0。我们的系统是Aghajani等人在类似假设下研究的PDE的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信