Development of a deep learning model to classify choroidal melanoma risk factors based on color fundus photographs

Huzaifa Suri , P. Connor Lentz , David A. Leske , Mostafa Mousavi , Haley S. D’Souza , Muhammad B. Qureshi , Raymond Iezzi , Yogatheesan Varatharajah , Lauren A. Dalvin
{"title":"Development of a deep learning model to classify choroidal melanoma risk factors based on color fundus photographs","authors":"Huzaifa Suri ,&nbsp;P. Connor Lentz ,&nbsp;David A. Leske ,&nbsp;Mostafa Mousavi ,&nbsp;Haley S. D’Souza ,&nbsp;Muhammad B. Qureshi ,&nbsp;Raymond Iezzi ,&nbsp;Yogatheesan Varatharajah ,&nbsp;Lauren A. Dalvin","doi":"10.1016/j.ajoint.2025.100167","DOIUrl":null,"url":null,"abstract":"<div><div>Choroidal melanoma is the most common malignant primary intraocular tumor and can develop either de novo or from a preexisting choroidal nevus, a benign pigmented lesion. Key risk factors for the transformation of choroidal nevus into melanoma include tumor diameter &gt; 5 mm, tumor thickness &gt; 2 mm, orange pigment, subretinal fluid, and low internal reflectivity on ultrasound. However, the assessment of many of these risk factors requires multimodal imaging equipment and skilled subspecialists, only available at tertiary referral centers. In this study, we developed and validated a deep learning approach to identifying these risk factors based solely on fundus images of choroidal nevi. Results indicate acceptable to excellent predictive performance for detection of all five risk factors. These findings suggest that deep learning models may be valuable tools for identifying high-risk choroidal nevi, particularly in resource-limited settings.</div></div>","PeriodicalId":100071,"journal":{"name":"AJO International","volume":"2 4","pages":"Article 100167"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJO International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950253525000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Choroidal melanoma is the most common malignant primary intraocular tumor and can develop either de novo or from a preexisting choroidal nevus, a benign pigmented lesion. Key risk factors for the transformation of choroidal nevus into melanoma include tumor diameter > 5 mm, tumor thickness > 2 mm, orange pigment, subretinal fluid, and low internal reflectivity on ultrasound. However, the assessment of many of these risk factors requires multimodal imaging equipment and skilled subspecialists, only available at tertiary referral centers. In this study, we developed and validated a deep learning approach to identifying these risk factors based solely on fundus images of choroidal nevi. Results indicate acceptable to excellent predictive performance for detection of all five risk factors. These findings suggest that deep learning models may be valuable tools for identifying high-risk choroidal nevi, particularly in resource-limited settings.
基于眼底彩色照片的脉络膜黑色素瘤危险因素分类深度学习模型的开发
脉络膜黑色素瘤是最常见的恶性原发性眼内肿瘤,既可以是新生的,也可以是由原有的脉络膜痣(一种良性色素病变)发展而来。脉膜痣向黑色素瘤转变的关键危险因素包括肿瘤直径5mm、肿瘤厚度2mm、橙色色素、视网膜下积液、超声内反射率低。然而,对许多这些危险因素的评估需要多模式成像设备和熟练的专科医生,只有在三级转诊中心才有。在本研究中,我们开发并验证了一种深度学习方法,仅基于眼底脉络膜痣图像来识别这些风险因素。结果表明,对所有五种危险因素的检测可接受到优异的预测性能。这些发现表明,深度学习模型可能是识别高风险脉络膜痣的有价值的工具,特别是在资源有限的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信