Statistics of moduli spaces of vector bundles over hyperelliptic curves

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Arijit Dey , Sampa Dey , Anirban Mukhopadhyay
{"title":"Statistics of moduli spaces of vector bundles over hyperelliptic curves","authors":"Arijit Dey ,&nbsp;Sampa Dey ,&nbsp;Anirban Mukhopadhyay","doi":"10.1016/j.bulsci.2025.103716","DOIUrl":null,"url":null,"abstract":"<div><div>We give an asymptotic formula for the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-rational points over a fixed determinant moduli space of stable vector bundles of rank <em>r</em> and degree <em>d</em> over a smooth, projective curve <em>X</em> of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span> defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Further, we study the distribution of the error term when <em>X</em> varies over a family of hyperelliptic curves. We then extend the results to the Seshadri desingularisation of the moduli space of semi-stable vector bundles of rank 2 with trivial determinant, and also to the moduli space of rank 2 stable Higgs bundles.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103716"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001423","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We give an asymptotic formula for the number of Fq-rational points over a fixed determinant moduli space of stable vector bundles of rank r and degree d over a smooth, projective curve X of genus g2 defined over Fq. Further, we study the distribution of the error term when X varies over a family of hyperelliptic curves. We then extend the results to the Seshadri desingularisation of the moduli space of semi-stable vector bundles of rank 2 with trivial determinant, and also to the moduli space of rank 2 stable Higgs bundles.
超椭圆曲线上向量束模空间的统计
我们给出了在Fq上定义的g≥2的光滑投影曲线X上,秩为r,阶为d的稳定向量束的固定行列式模空间上,Fq-有理点的个数的渐近公式。进一步研究了X在一组超椭圆曲线上变化时误差项的分布。然后我们将结果推广到具有平凡行列式的2阶半稳定向量束的模空间的Seshadri去广化,以及2阶稳定希格斯束的模空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信