First-principles investigation of Co2+ and Mn2+ doping in Mg2SnO4: Structural, electronic, optical, thermodynamic, and mechanical properties for advanced phosphor applications

IF 3 Q2 PHYSICS, CONDENSED MATTER
Naveed Ahmad , Mohamed Hassan Eisa , Muhammad Khan , Xiaohui Sun , Ahmed M. Alkaoud , Katabathini Narasimharao , Muhammad Shahzad
{"title":"First-principles investigation of Co2+ and Mn2+ doping in Mg2SnO4: Structural, electronic, optical, thermodynamic, and mechanical properties for advanced phosphor applications","authors":"Naveed Ahmad ,&nbsp;Mohamed Hassan Eisa ,&nbsp;Muhammad Khan ,&nbsp;Xiaohui Sun ,&nbsp;Ahmed M. Alkaoud ,&nbsp;Katabathini Narasimharao ,&nbsp;Muhammad Shahzad","doi":"10.1016/j.micrna.2025.208323","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigated the structural, electronic, optical, thermodynamic, and mechanical properties of Co<sup>2+</sup> and Mn<sup>2+</sup>-doped Mg<sub>2</sub>SnO<sub>4</sub> phosphors using first-principles calculations. Our results reveal that Co<sup>2+</sup> doping induces semimetallic behavior, while Mn<sup>2+</sup> doping leads to semiconducting properties with a band gap of 0.55 eV. The introduction of Mn<sup>2+</sup> introduces defect states below the conduction band, resulting in n-type conductivity in both spin states. Mn<sup>2+</sup>-doped Mg<sub>2</sub>SnO<sub>4</sub> exhibits exceptional luminescent properties, owing to its small band gap, making it a promising candidate for advanced phosphor applications and optical devices. We also analyzed the optical properties, including dielectric reflection, reflectivity, refractive index, and absorption coefficient, revealing their dependence on photon energy and the electron energy loss spectrum. Additionally, we applied the quasi-harmonic Debye model to calculate key thermodynamic properties, such as Gibbs free energy, Debye temperature, entropy, enthalpy, and thermal expansion coefficient across a range of temperatures (0–1200 K) and pressures (0–10 GPa). The results also provide insights into the interdependence of these thermodynamic parameters under varying conditions. Lastly, our analysis of the mechanical properties indicates that both doped compounds exhibit mechanical stability and ductility, with relatively low stiffness, highlighting their potential for optoelectronics applications, especially in LEDs.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208323"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the structural, electronic, optical, thermodynamic, and mechanical properties of Co2+ and Mn2+-doped Mg2SnO4 phosphors using first-principles calculations. Our results reveal that Co2+ doping induces semimetallic behavior, while Mn2+ doping leads to semiconducting properties with a band gap of 0.55 eV. The introduction of Mn2+ introduces defect states below the conduction band, resulting in n-type conductivity in both spin states. Mn2+-doped Mg2SnO4 exhibits exceptional luminescent properties, owing to its small band gap, making it a promising candidate for advanced phosphor applications and optical devices. We also analyzed the optical properties, including dielectric reflection, reflectivity, refractive index, and absorption coefficient, revealing their dependence on photon energy and the electron energy loss spectrum. Additionally, we applied the quasi-harmonic Debye model to calculate key thermodynamic properties, such as Gibbs free energy, Debye temperature, entropy, enthalpy, and thermal expansion coefficient across a range of temperatures (0–1200 K) and pressures (0–10 GPa). The results also provide insights into the interdependence of these thermodynamic parameters under varying conditions. Lastly, our analysis of the mechanical properties indicates that both doped compounds exhibit mechanical stability and ductility, with relatively low stiffness, highlighting their potential for optoelectronics applications, especially in LEDs.
Mg2SnO4中Co2+和Mn2+掺杂的第一性原理研究:先进荧光粉应用的结构、电子、光学、热力学和机械性能
在本研究中,我们利用第一性原理计算研究了掺杂Co2+和Mn2+的Mg2SnO4荧光粉的结构、电子、光学、热力学和力学性能。结果表明,Co2+掺杂可诱导半金属性质,而Mn2+掺杂可诱导半导体性质,带隙为0.55 eV。Mn2+的引入引入了导带以下的缺陷态,导致两个自旋态都具有n型导电性。Mn2+掺杂的Mg2SnO4由于其小带隙而表现出优异的发光性能,使其成为先进荧光粉应用和光学器件的有希望的候选者。我们还分析了光学性质,包括介电反射、反射率、折射率和吸收系数,揭示了它们与光子能量和电子能量损失谱的关系。此外,我们应用准谐波Debye模型计算了关键的热力学性质,如Gibbs自由能、Debye温度、熵、焓和热膨胀系数在温度(0-1200 K)和压力(0-10 GPa)范围内。结果还提供了洞察这些热力学参数在不同条件下的相互依存关系。最后,我们对机械性能的分析表明,这两种掺杂化合物都表现出机械稳定性和延展性,具有相对较低的刚度,突出了它们在光电子应用,特别是在led中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信