On mean field games in infinite dimension

IF 2.3 1区 数学 Q1 MATHEMATICS
Salvatore Federico , Fausto Gozzi , Andrzej Święch
{"title":"On mean field games in infinite dimension","authors":"Salvatore Federico ,&nbsp;Fausto Gozzi ,&nbsp;Andrzej Święch","doi":"10.1016/j.matpur.2025.103780","DOIUrl":null,"url":null,"abstract":"<div><div>We study a Mean Field Games (MFG) system in a real, separable infinite dimensional Hilbert space. The system consists of a second order parabolic type equation, called Hamilton-Jacobi-Bellman <span><span>(<strong>HJB</strong>)</span></span> equation in the paper, coupled with a nonlinear Fokker-Planck <span><span>(<strong>FP</strong>)</span></span> equation. Both equations contain a Kolmogorov operator. Solutions to the HJB equation are interpreted in the mild solution sense and solutions to the FP equation are interpreted in an appropriate weak sense. We prove well-posedness of the considered MFG system under certain conditions. The existence of a solution to the MFG system is proved using Tikhonov's fixed point theorem in a proper space. Uniqueness of solutions is obtained under typical separability and Lasry-Lions type monotonicity conditions.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103780"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001242","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a Mean Field Games (MFG) system in a real, separable infinite dimensional Hilbert space. The system consists of a second order parabolic type equation, called Hamilton-Jacobi-Bellman (HJB) equation in the paper, coupled with a nonlinear Fokker-Planck (FP) equation. Both equations contain a Kolmogorov operator. Solutions to the HJB equation are interpreted in the mild solution sense and solutions to the FP equation are interpreted in an appropriate weak sense. We prove well-posedness of the considered MFG system under certain conditions. The existence of a solution to the MFG system is proved using Tikhonov's fixed point theorem in a proper space. Uniqueness of solutions is obtained under typical separability and Lasry-Lions type monotonicity conditions.
无限维的平均场对策
研究了可分离无限维实数Hilbert空间中的平均场对策系统。该系统由一个二阶抛物型方程(本文称为Hamilton-Jacobi-Bellman (HJB)方程)和一个非线性Fokker-Planck (FP)方程组成。两个方程都包含一个Kolmogorov算子。HJB方程的解在弱解意义上得到解释,FP方程的解在弱解意义上得到解释。在一定条件下证明了所考虑的MFG系统的适定性。利用Tikhonov不动点定理,证明了MFG系统解的存在性。在典型可分性和Lasry-Lions型单调性条件下,得到了解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信