Space pairs of the Grassmann algebra: Unexpected pairs with polynomial growth of the codimensions

IF 0.8 2区 数学 Q2 MATHEMATICS
Alan Guimarães , David Levi da Silva Macêdo
{"title":"Space pairs of the Grassmann algebra: Unexpected pairs with polynomial growth of the codimensions","authors":"Alan Guimarães ,&nbsp;David Levi da Silva Macêdo","doi":"10.1016/j.jalgebra.2025.08.024","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>K</em> be a field of characteristic zero and <em>E</em> the infinite dimensional Grassmann algebra over <em>K</em>. We determine the weak polynomial identities for pairs <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span>, where <em>S</em> is a subspace of <em>E</em> such that <span><math><mi>S</mi><mo>∪</mo><mo>{</mo><mn>1</mn><mo>}</mo></math></span> generates <em>E</em>. Depending on the structure of <em>S</em>, we divide this analysis into four distinct cases. When <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> belongs to the first two types, we show that the codimension sequence is <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>,</mo><mi>S</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for all <em>n</em>. On the other hand, for certain pairs of the third type, we prove that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>,</mo><mi>S</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, i.e., in this case, the codimension sequence coincides with the ordinary (associative) case. We further investigate certain classes of associative pairs <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span>, exhibiting polynomial growth, particularly those whose codimension sequences correspond to Young diagrams with unbounded numbers of boxes below the first row. These pairs show that an usual characterization of polynomial growth of the codimensions does not hold in the case of associative-space pairs.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005022","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let K be a field of characteristic zero and E the infinite dimensional Grassmann algebra over K. We determine the weak polynomial identities for pairs (E,S), where S is a subspace of E such that S{1} generates E. Depending on the structure of S, we divide this analysis into four distinct cases. When (E,S) belongs to the first two types, we show that the codimension sequence is cn(E,S)=1 for all n. On the other hand, for certain pairs of the third type, we prove that cn(E,S)=2n1, i.e., in this case, the codimension sequence coincides with the ordinary (associative) case. We further investigate certain classes of associative pairs (E,S), exhibiting polynomial growth, particularly those whose codimension sequences correspond to Young diagrams with unbounded numbers of boxes below the first row. These pairs show that an usual characterization of polynomial growth of the codimensions does not hold in the case of associative-space pairs.
Grassmann代数的空间对:余维多项式增长的非预期对
设K是特征为零的域,E是K上的无限维Grassmann代数。我们确定了(E,S)对的弱多项式恒等式,其中S是E的子空间,使得S∪{1}生成E。根据S的结构,我们将此分析分为四种不同的情况。当(E,S)属于前两种类型时,我们证明了对所有n的余维序列为cn(E,S)=1。另一方面,对于第三种类型的某些对,我们证明了cn(E,S)=2n−1,即在这种情况下,余维序列与普通(结合)情况重合。我们进一步研究了一类具有多项式增长的结合对(E,S),特别是那些协维序列对应于第一行以下具有无界框数的Young图的组合对。这些对表明,协维的多项式增长的通常表征在结合空间对的情况下并不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信