Mélanie Z. Lauria*, Xiaodi Shi, Faiz Haque, Merle Plassmann, Anna Roos, Malene Simon, Jonathan P. Benskin* and Karl J. Jobst*,
{"title":"Discovery of Fluorotelomer Sulfones in the Blubber of Greenland Killer Whales (Orcinus orca)","authors":"Mélanie Z. Lauria*, Xiaodi Shi, Faiz Haque, Merle Plassmann, Anna Roos, Malene Simon, Jonathan P. Benskin* and Karl J. Jobst*, ","doi":"10.1021/acs.estlett.5c00516","DOIUrl":null,"url":null,"abstract":"<p >Most known per- and polyfluoroalkyl substances (PFAS) bioaccumulate by binding to proteins or partitioning to phospholipids, leading to their prevalence in liver and blood. However, the recent discovery of high concentrations of unidentified extractable organofluorine (EOF) in the blubber of a killer whale (<i>Orcinus orca</i>) from Greenland suggests that some fluorinated substances preferentially bioaccumulate in storage lipids. To further investigate this, the present work examined blubber from 4 killer whales (3 from Greenland, 1 from Sweden) via gas chromatography-atmospheric pressure chemical ionization-ion mobility mass spectrometry. Using collision cross sections, we prioritized features suspected to be highly fluorinated and then selected 5 for manual annotation. Custom synthesized standards confirmed 10:2 and 12:2 fluorotelomer methylsulfone, 10:2 and 12:2 fluorotelomer chloromethylsulfone, and 6:2 bisfluorotelomer sulfone in all blubber samples from Greenland at concentrations ranging from <0.4 to 72.5 ng/g, explaining 34–75% of blubber EOF, but none in the Swedish sample. None of these substances were observable in liver, suggesting preferential accumulation in storage lipids. To the best of our knowledge, this is the first report of neutral fluorotelomer sulfones in wildlife and the first identification of lipophilic, highly fluorinated PFAS.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 9","pages":"1218–1224"},"PeriodicalIF":8.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.estlett.5c00516","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.5c00516","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Most known per- and polyfluoroalkyl substances (PFAS) bioaccumulate by binding to proteins or partitioning to phospholipids, leading to their prevalence in liver and blood. However, the recent discovery of high concentrations of unidentified extractable organofluorine (EOF) in the blubber of a killer whale (Orcinus orca) from Greenland suggests that some fluorinated substances preferentially bioaccumulate in storage lipids. To further investigate this, the present work examined blubber from 4 killer whales (3 from Greenland, 1 from Sweden) via gas chromatography-atmospheric pressure chemical ionization-ion mobility mass spectrometry. Using collision cross sections, we prioritized features suspected to be highly fluorinated and then selected 5 for manual annotation. Custom synthesized standards confirmed 10:2 and 12:2 fluorotelomer methylsulfone, 10:2 and 12:2 fluorotelomer chloromethylsulfone, and 6:2 bisfluorotelomer sulfone in all blubber samples from Greenland at concentrations ranging from <0.4 to 72.5 ng/g, explaining 34–75% of blubber EOF, but none in the Swedish sample. None of these substances were observable in liver, suggesting preferential accumulation in storage lipids. To the best of our knowledge, this is the first report of neutral fluorotelomer sulfones in wildlife and the first identification of lipophilic, highly fluorinated PFAS.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.