Palindromic length of infinite aperiodic words

IF 0.9 3区 数学 Q1 MATHEMATICS
Josef Rukavicka
{"title":"Palindromic length of infinite aperiodic words","authors":"Josef Rukavicka","doi":"10.1016/j.ejc.2025.104237","DOIUrl":null,"url":null,"abstract":"<div><div>The palindromic length of the finite word <span><math><mi>v</mi></math></span> is equal to the minimal number of palindromes whose concatenation is equal to <span><math><mi>v</mi></math></span>. It was conjectured in 2013 that for every infinite aperiodic word <span><math><mi>x</mi></math></span>, the palindromic length of its factors is not bounded. We prove this conjecture to be true.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104237"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982500126X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The palindromic length of the finite word v is equal to the minimal number of palindromes whose concatenation is equal to v. It was conjectured in 2013 that for every infinite aperiodic word x, the palindromic length of its factors is not bounded. We prove this conjecture to be true.
无限非周期性单词的回文长度
有限单词v的回文长度等于串接等于v的回文的最小个数。2013年曾推测,对于每一个无限的非周期单词x,其因子的回文长度都是无界的。我们证明这个猜想是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信