{"title":"The spatial average of solutions to SPDEs is asymptotically independent of the solution","authors":"Ciprian A. Tudor , Jérémy Zurcher","doi":"10.1016/j.bulsci.2025.103719","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial variable. We consider the spatial average of the solution <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>R</mi></mrow></msub></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>d</mi><mi>x</mi></math></span>, where <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mi>E</mi><msup><mrow><mo>(</mo><msub><mrow><mo>∫</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. It is known that, when <em>R</em> goes to infinity, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> converges in law to a standard Gaussian random variable <em>Z</em>. We show that the spatial average <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is actually asymptotic independent by the solution itself, at any time and at any point in space, meaning that the random vector <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span> converges in distribution, as <span><math><mi>R</mi><mo>→</mo><mo>∞</mo></math></span>, to <span><math><mo>(</mo><mi>Z</mi><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>, where <em>Z</em> is a standard normal random variable independent of <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. By using the Stein-Malliavin calculus, we also obtain the rate of convergence, under the Wasserstein distance, for this limit theorem.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103719"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001459","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial variable. We consider the spatial average of the solution , where . It is known that, when R goes to infinity, converges in law to a standard Gaussian random variable Z. We show that the spatial average is actually asymptotic independent by the solution itself, at any time and at any point in space, meaning that the random vector converges in distribution, as , to , where Z is a standard normal random variable independent of . By using the Stein-Malliavin calculus, we also obtain the rate of convergence, under the Wasserstein distance, for this limit theorem.