Multicriteria Optimization of Turbulence Intensity in Supercritical CO2 Extraction: Coupled Numerical Analysis and Experimental Validation

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Ali Saebi, Hossein Balanian, Mahsa Ghafouri, Mehdi Delkhoshrad, Hamidreza Gholami, Arian Hosseinirad, Mehdi Hasani, Fatemeh Nikkhoo, Mohammadjafar Aghasian, Saeid Minaei, Mohammad-Taghi Ebadi, Leonardo Baptista, Reza Rasoolzadeh* and Alireza Mahdavian*, 
{"title":"Multicriteria Optimization of Turbulence Intensity in Supercritical CO2 Extraction: Coupled Numerical Analysis and Experimental Validation","authors":"Ali Saebi,&nbsp;Hossein Balanian,&nbsp;Mahsa Ghafouri,&nbsp;Mehdi Delkhoshrad,&nbsp;Hamidreza Gholami,&nbsp;Arian Hosseinirad,&nbsp;Mehdi Hasani,&nbsp;Fatemeh Nikkhoo,&nbsp;Mohammadjafar Aghasian,&nbsp;Saeid Minaei,&nbsp;Mohammad-Taghi Ebadi,&nbsp;Leonardo Baptista,&nbsp;Reza Rasoolzadeh* and Alireza Mahdavian*,&nbsp;","doi":"10.1021/acs.iecr.5c02508","DOIUrl":null,"url":null,"abstract":"<p >The thermal behavior of supercritical CO<sub>2</sub> within high-pressure extractors plays a pivotal role in preserving temperature-sensitive bioactive compounds during extraction. However, the effects of turbulence intensity (TI) on local heat transfer dynamics, fluid stability, and extraction efficiency remain poorly quantified. This study presents an integrated computational and experimental framework to systematically evaluate the impact of TI (2–20%) on wall temperature uniformity, pressure distribution, CO<sub>2</sub> density fluctuations, and the extraction yield of bioactive compounds. A validated CFD model was developed and experimentally supported through high-resolution infrared thermography and GC-FID/GC-MS analysis, with a maximum deviation below 0.96 °C. Multicriteria decision-making combining Shannon entropy weighting and TOPSIS analysis revealed that a 4% turbulence intensity offered the most thermodynamically stable configure ratio and the highest Linalool yield (74.05  ±  2.47%). These findings deepen the understanding of turbulence-heat-compound coupling in supercritical systems and offer a scalable methodology for optimizing extraction conditions in pharmaceutical and food applications.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 37","pages":"18468–18476"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5c02508","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c02508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal behavior of supercritical CO2 within high-pressure extractors plays a pivotal role in preserving temperature-sensitive bioactive compounds during extraction. However, the effects of turbulence intensity (TI) on local heat transfer dynamics, fluid stability, and extraction efficiency remain poorly quantified. This study presents an integrated computational and experimental framework to systematically evaluate the impact of TI (2–20%) on wall temperature uniformity, pressure distribution, CO2 density fluctuations, and the extraction yield of bioactive compounds. A validated CFD model was developed and experimentally supported through high-resolution infrared thermography and GC-FID/GC-MS analysis, with a maximum deviation below 0.96 °C. Multicriteria decision-making combining Shannon entropy weighting and TOPSIS analysis revealed that a 4% turbulence intensity offered the most thermodynamically stable configure ratio and the highest Linalool yield (74.05  ±  2.47%). These findings deepen the understanding of turbulence-heat-compound coupling in supercritical systems and offer a scalable methodology for optimizing extraction conditions in pharmaceutical and food applications.

Abstract Image

超临界CO2抽提湍流强度的多准则优化:数值分析与实验验证
超临界CO2在高压萃取器中的热行为对萃取过程中保存温度敏感的生物活性化合物起着关键作用。然而,湍流强度(TI)对局部传热动力学、流体稳定性和萃取效率的影响仍然很少量化。本研究提出了一个集成的计算和实验框架,系统地评估TI(2-20%)对壁面温度均匀性、压力分布、CO2密度波动和生物活性化合物提取率的影响。建立了一个经过验证的CFD模型,并通过高分辨率红外热像仪和GC-FID/GC-MS分析进行了实验支持,最大偏差低于0.96 °C。结合Shannon熵权和TOPSIS分析的多准则决策结果表明,4%湍流强度下,芳樟醇产率最高(74.05±2.47%)。这些发现加深了对超临界系统中湍流-热-化合物耦合的理解,并为优化制药和食品应用中的提取条件提供了可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信