{"title":"RNA-binding proteins pull in chromatin loops","authors":"Ann Dean","doi":"10.1038/s41556-025-01743-5","DOIUrl":null,"url":null,"abstract":"During development as cells exit a pluripotent state, chromatin looping interactions are strengthened, but the mechanism for this is unknown. A study now shows that CTCF–RBP interactions increase upon differentiation of embryonic stem cells to neural stem cells, and that the non-coding RNA Pantr1 collaborates with CTCF and RBPs to contract the genome.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 9","pages":"1387-1388"},"PeriodicalIF":19.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-025-01743-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During development as cells exit a pluripotent state, chromatin looping interactions are strengthened, but the mechanism for this is unknown. A study now shows that CTCF–RBP interactions increase upon differentiation of embryonic stem cells to neural stem cells, and that the non-coding RNA Pantr1 collaborates with CTCF and RBPs to contract the genome.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology