Multi-sheet wormholes in the gravitational soliton formalism

IF 3.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Yusuke Makita, Keisuke Izumi, Daisuke Yoshida and Keiya Uemichi
{"title":"Multi-sheet wormholes in the gravitational soliton formalism","authors":"Yusuke Makita, Keisuke Izumi, Daisuke Yoshida and Keiya Uemichi","doi":"10.1088/1361-6382/adfeb0","DOIUrl":null,"url":null,"abstract":"We analytically construct static regular solutions describing wormholes that connect multiple asymptotic regions, supported by a phantom scalar field. The solutions are static and axially symmetric, and are constructed using the gravitational soliton formalism, in which the equations of motion reduce to the Laplace equations on a two-dimensional sheet. However, the presence of multiple asymptotic regions necessitates the introduction of multiple such sheets. These sheets are appropriately cut and glued together to form a globally regular geometry. This gluing procedure represents the principal distinction from conventional Weyl-type solitonic solutions and is a characteristic feature of the wormhole geometries studied in this paper.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"163 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adfeb0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analytically construct static regular solutions describing wormholes that connect multiple asymptotic regions, supported by a phantom scalar field. The solutions are static and axially symmetric, and are constructed using the gravitational soliton formalism, in which the equations of motion reduce to the Laplace equations on a two-dimensional sheet. However, the presence of multiple asymptotic regions necessitates the introduction of multiple such sheets. These sheets are appropriately cut and glued together to form a globally regular geometry. This gluing procedure represents the principal distinction from conventional Weyl-type solitonic solutions and is a characteristic feature of the wormhole geometries studied in this paper.
引力孤子形式论中的多片虫洞
我们解析构造描述虫洞的静态正则解,虫洞连接多个渐近区域,由虚标量场支持。解是静态的和轴对称的,并且是用引力孤子形式构造的,其中运动方程简化为二维薄片上的拉普拉斯方程。然而,由于存在多个渐近区域,需要引入多个这样的表。这些薄片被适当地切割和粘合在一起,形成一个全局规则的几何形状。这种粘接过程代表了与常规weyl型孤子解的主要区别,也是本文研究的虫洞几何形状的一个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信