{"title":"Crystal Facet-Engineered Anion Regulation Enables Fast-Charging Stability in Lithium Metal Batteries.","authors":"Chunli Liu,Weiping Li,Zheng Wang,Zhengqian Jin,Teng Deng,Zhuo Yang,Diandian Han,Yaqiong Su,Yuankun Wang,Zhenjiang Cao,Yangyang Liu,R Vasant Kumar,Wei Tang,Shujiang Ding,Kai Xi","doi":"10.1002/anie.202512742","DOIUrl":null,"url":null,"abstract":"Lithium metal batteries (LMBs) offer exceptional energy density and output voltage. However, their practical application remains hindered by sluggish ion transport and uncontrolled lithium dendrite formation, particularly under fast-charging conditions. Here, we report a facet-engineered anion-regulating separator based on zeolitic imidazolate framework-8 (ZIF-8) with preferentially crystal-exposed (110) facets. The coordinatively unsaturated Zn centers on this surface serve as Lewis acid sites that selectively anchor bis(trifluoromethanesulfonyl)imide anions (TFSI-), inducing directional Li+ flux and suppressing dendritic growth. Concurrently, the microporous framework facilitates spatial lithium confinement, mitigating local current density and enhancing interfacial stability. As a result, the engineered separator enables ultra-stable cycling of Li||Cu cells for over 1400 cycles at 2 mA cm-2 and 1 mAh cm-2, delivering an average Coulombic efficiency of 98.7%. In full-cell configurations, LiFePO4 (LFP) cells exhibit 99.9% Coulombic efficiency over 3000 cycles at 5 C, while high-loading Li||LiNi0.8Co0.1Mn0.1O2 (NCM811, 12.30 mg cm-2) cell retains 84.4% of its capacity after 135 cycles. Furthermore, a Li||LFP pouch cell with a high cathode loading of 19.92 mg cm-2 demonstrates robust cycling over 170 cycles. These findings establish facet-engineered separators based on framework materials as a versatile and scalable strategy for advancing stable and fast-charging metal batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"111 1","pages":"e202512742"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202512742","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium metal batteries (LMBs) offer exceptional energy density and output voltage. However, their practical application remains hindered by sluggish ion transport and uncontrolled lithium dendrite formation, particularly under fast-charging conditions. Here, we report a facet-engineered anion-regulating separator based on zeolitic imidazolate framework-8 (ZIF-8) with preferentially crystal-exposed (110) facets. The coordinatively unsaturated Zn centers on this surface serve as Lewis acid sites that selectively anchor bis(trifluoromethanesulfonyl)imide anions (TFSI-), inducing directional Li+ flux and suppressing dendritic growth. Concurrently, the microporous framework facilitates spatial lithium confinement, mitigating local current density and enhancing interfacial stability. As a result, the engineered separator enables ultra-stable cycling of Li||Cu cells for over 1400 cycles at 2 mA cm-2 and 1 mAh cm-2, delivering an average Coulombic efficiency of 98.7%. In full-cell configurations, LiFePO4 (LFP) cells exhibit 99.9% Coulombic efficiency over 3000 cycles at 5 C, while high-loading Li||LiNi0.8Co0.1Mn0.1O2 (NCM811, 12.30 mg cm-2) cell retains 84.4% of its capacity after 135 cycles. Furthermore, a Li||LFP pouch cell with a high cathode loading of 19.92 mg cm-2 demonstrates robust cycling over 170 cycles. These findings establish facet-engineered separators based on framework materials as a versatile and scalable strategy for advancing stable and fast-charging metal batteries.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.