A new soft sensing method based on serial-parallel GRU with self-attention mechanism for complex multi-unit industrial processes.

IF 6.5
Kaixiang Peng, Guanyao Wang, Tie Li, Qichun Zhang, Jie Dong
{"title":"A new soft sensing method based on serial-parallel GRU with self-attention mechanism for complex multi-unit industrial processes.","authors":"Kaixiang Peng, Guanyao Wang, Tie Li, Qichun Zhang, Jie Dong","doi":"10.1016/j.isatra.2025.08.042","DOIUrl":null,"url":null,"abstract":"<p><p>With the deep digital transformation of traditional manufacturing industry and the continuous automation level improvement of production lines, it is more important to predict the Key Performance Indicators (KPIs) of processes in a timely and accurate manner. The traditional laboratory destructive test method for obtaining KPIs consumes a large amount of time and incurs high costs, which not only fails to provide timely and effective guidance for production processes but also results in significant losses for manufacturing enterprises. To address these issues, an online prediction soft sensor model for KPIs based on a serial-parallel gated recurrent unit with self-attention mechanism (SPGRU-SA) soft sensor model is proposed. This model achieves accurate online prediction of KPIs by considering both the dynamic features of multi-unit processes and the static features of process setups. First, a serial-parallel gated recurrent unit model is designed to extract multi-unit dynamic features. Second, based on the self-attention mechanism, the attention weights of static features and dynamic features are calculated, which can reflect the correlation of the performance indicators. Then, the fully connected layers output the result. Finally, the comparative experimental results based on the hot rolling strip mill process and the Tennessee Eastman process show that SPGRU-SA can accurately predict the KPIs of complex multi-unit industrial processes.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.08.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the deep digital transformation of traditional manufacturing industry and the continuous automation level improvement of production lines, it is more important to predict the Key Performance Indicators (KPIs) of processes in a timely and accurate manner. The traditional laboratory destructive test method for obtaining KPIs consumes a large amount of time and incurs high costs, which not only fails to provide timely and effective guidance for production processes but also results in significant losses for manufacturing enterprises. To address these issues, an online prediction soft sensor model for KPIs based on a serial-parallel gated recurrent unit with self-attention mechanism (SPGRU-SA) soft sensor model is proposed. This model achieves accurate online prediction of KPIs by considering both the dynamic features of multi-unit processes and the static features of process setups. First, a serial-parallel gated recurrent unit model is designed to extract multi-unit dynamic features. Second, based on the self-attention mechanism, the attention weights of static features and dynamic features are calculated, which can reflect the correlation of the performance indicators. Then, the fully connected layers output the result. Finally, the comparative experimental results based on the hot rolling strip mill process and the Tennessee Eastman process show that SPGRU-SA can accurately predict the KPIs of complex multi-unit industrial processes.

基于自关注机制的串并联GRU的复杂多单元工业过程软测量新方法。
随着传统制造业的深度数字化转型和生产线自动化水平的不断提高,及时准确地预测流程的关键绩效指标(kpi)变得更加重要。传统的实验室破坏性检测获取kpi的方法耗时长、成本高,不仅不能及时有效地指导生产过程,而且给制造企业造成了重大损失。针对这些问题,提出了一种基于自关注机制的串并联门控循环单元(SPGRU-SA)软测量模型的kpi在线预测软测量模型。该模型同时考虑了多单元过程的动态特征和过程设置的静态特征,实现了对kpi的准确在线预测。首先,设计了一种串并联门控循环单元模型,提取多单元动态特征;其次,基于自注意机制,计算静态特征和动态特征的注意权重,以反映绩效指标的相关性。然后,完全连接的层输出结果。最后,基于热轧带钢过程和田纳西伊斯曼过程的对比实验结果表明,SPGRU-SA可以准确预测复杂的多单元工业过程的kpi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信