{"title":"Current therapeutic strategies in Parkinson’s disease: Future perspectives","authors":"Tae Young Kim , Byoung Dae Lee","doi":"10.1016/j.mocell.2025.100274","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of misfolded α-synuclein. Current treatments, including dopaminergic medications and deep brain stimulation, provide symptomatic relief but do not halt disease progression. Recent advances in molecular research have enabled the development of disease-modifying strategies targeting key pathogenic mechanisms, such as α-synuclein aggregation, mitochondrial dysfunction, and genetic mutations, including <em>LRRK2</em> and <em>GBA1</em>. In parallel, pluripotent stem cell-derived dopaminergic neurons have emerged as a scalable and ethically viable source for cell replacement therapy. Early-phase clinical trials have demonstrated the safety and functional integration of these grafts. Ongoing research is now focused on enhancing graft purity, immune compatibility, and anatomical precision, including homotopic transplantation and circuit-level reconstruction. Together, these emerging strategies offer the potential to shift PD treatment paradigms by combining symptomatic control with long-term neural restoration. This review summarizes current therapeutic approaches and highlights recent advances in disease-modifying and regenerative interventions for PD.</div></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":"48 11","pages":"Article 100274"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847825000986","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of misfolded α-synuclein. Current treatments, including dopaminergic medications and deep brain stimulation, provide symptomatic relief but do not halt disease progression. Recent advances in molecular research have enabled the development of disease-modifying strategies targeting key pathogenic mechanisms, such as α-synuclein aggregation, mitochondrial dysfunction, and genetic mutations, including LRRK2 and GBA1. In parallel, pluripotent stem cell-derived dopaminergic neurons have emerged as a scalable and ethically viable source for cell replacement therapy. Early-phase clinical trials have demonstrated the safety and functional integration of these grafts. Ongoing research is now focused on enhancing graft purity, immune compatibility, and anatomical precision, including homotopic transplantation and circuit-level reconstruction. Together, these emerging strategies offer the potential to shift PD treatment paradigms by combining symptomatic control with long-term neural restoration. This review summarizes current therapeutic approaches and highlights recent advances in disease-modifying and regenerative interventions for PD.
期刊介绍:
Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is "Mol. Cells". Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.