Emre Sedar Saygili , Adnan Batman , Ersen Karakilic
{"title":"Predicting stimulated C-peptide in type 1 diabetes using machine learning: a web-based tool from the T1D exchange registry","authors":"Emre Sedar Saygili , Adnan Batman , Ersen Karakilic","doi":"10.1016/j.diabres.2025.112453","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The mixed-meal tolerance test (MMTT), though considered the gold standard for evaluating residual beta-cell function in type 1 diabetes mellitus (T1D), is impractical for routine use. We aimed to develop and validate a machine learning (ML) model to predict MMTT-stimulated C-peptide categories using routine clinical data.</div></div><div><h3>Methods</h3><div>Data from 319 individuals in the T1D Exchange Registry with complete MMTT and clinical information were analyzed. The cohort was randomly split into training (70%) and test (30%) sets. Five clinical variables—age at diagnosis, diabetes duration, HbA1c, non-fasting glucose, and non-fasting C-peptide—were selected via recursive feature elimination. Four ML algorithms (random forest [RF], XGBoost, LightGBM, and ordinal logistic regression) were trained with 10-fold cross-validation.</div></div><div><h3>Results</h3><div>The RF model showed the highest performance: AUC 0.94 (95% CI: 0.92–0.96), sensitivity 0.84 (95% CI: 0.80–0.89), and specificity 0.92 (95% CI: 0.90–0.94) in cross-validation. In the test set, AUC was 0.97, sensitivity 88%, and specificity 94%. Notably, 17.7% of individuals with undetectable non-fasting C-peptide had measurable levels after MMTT.</div></div><div><h3>Conclusions</h3><div>This ML model provides a practical, non-invasive tool for estimating beta-cell function in T1D and is available online at <span><span>https://cpeptide.streamlit.app</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":11249,"journal":{"name":"Diabetes research and clinical practice","volume":"229 ","pages":"Article 112453"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes research and clinical practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016882272500467X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
The mixed-meal tolerance test (MMTT), though considered the gold standard for evaluating residual beta-cell function in type 1 diabetes mellitus (T1D), is impractical for routine use. We aimed to develop and validate a machine learning (ML) model to predict MMTT-stimulated C-peptide categories using routine clinical data.
Methods
Data from 319 individuals in the T1D Exchange Registry with complete MMTT and clinical information were analyzed. The cohort was randomly split into training (70%) and test (30%) sets. Five clinical variables—age at diagnosis, diabetes duration, HbA1c, non-fasting glucose, and non-fasting C-peptide—were selected via recursive feature elimination. Four ML algorithms (random forest [RF], XGBoost, LightGBM, and ordinal logistic regression) were trained with 10-fold cross-validation.
Results
The RF model showed the highest performance: AUC 0.94 (95% CI: 0.92–0.96), sensitivity 0.84 (95% CI: 0.80–0.89), and specificity 0.92 (95% CI: 0.90–0.94) in cross-validation. In the test set, AUC was 0.97, sensitivity 88%, and specificity 94%. Notably, 17.7% of individuals with undetectable non-fasting C-peptide had measurable levels after MMTT.
Conclusions
This ML model provides a practical, non-invasive tool for estimating beta-cell function in T1D and is available online at https://cpeptide.streamlit.app.
期刊介绍:
Diabetes Research and Clinical Practice is an international journal for health-care providers and clinically oriented researchers that publishes high-quality original research articles and expert reviews in diabetes and related areas. The role of the journal is to provide a venue for dissemination of knowledge and discussion of topics related to diabetes clinical research and patient care. Topics of focus include translational science, genetics, immunology, nutrition, psychosocial research, epidemiology, prevention, socio-economic research, complications, new treatments, technologies and therapy.