George Bakewell-Smith, Federico Girotti, Mădălin Guţă, Juan P. Garrahan
{"title":"Bounds on Fluctuations of First Passage Times for Counting Observables in Classical and Quantum Markov Processes","authors":"George Bakewell-Smith, Federico Girotti, Mădălin Guţă, Juan P. Garrahan","doi":"10.1007/s10955-025-03506-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the statistics of first passage times (FPTs) of trajectory observables in both classical and quantum Markov processes. We consider specifically the FPTs of <i>counting observables</i>, that is, the times to reach a certain threshold of a trajectory quantity which takes values in the positive integers and is non-decreasing in time. For classical continuous-time Markov chains we rigorously prove: (i) a large deviation principle (LDP) for FPTs, whose corollary is a strong law of large numbers; (ii) a concentration inequality for the FPT of the dynamical activity, which provides an upper bound to the probability of its fluctuations to all orders; and (iii) an upper bound to the probability of the tails for the FPT of an arbitrary counting observable. For quantum Markov processes we rigorously prove: (iv) the quantum version of the LDP, and subsequent strong law of large numbers, for the FPTs of generic counts of quantum jumps; (v) a concentration bound for the the FPT of total number of quantum jumps, which provides an upper bound to the probability of its fluctuations to all orders, together with a similar bound for the sub-class of quantum reset processes which requires less strict irreducibility conditions; and (vi) a tail bound for the FPT of arbitrary counts. Our results allow to extend to FPTs the so-called “inverse thermodynamic uncertainty relations” that upper bound the size of fluctuations in time-integrated quantities. We illustrate our results with simple examples.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 9","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03506-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03506-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study the statistics of first passage times (FPTs) of trajectory observables in both classical and quantum Markov processes. We consider specifically the FPTs of counting observables, that is, the times to reach a certain threshold of a trajectory quantity which takes values in the positive integers and is non-decreasing in time. For classical continuous-time Markov chains we rigorously prove: (i) a large deviation principle (LDP) for FPTs, whose corollary is a strong law of large numbers; (ii) a concentration inequality for the FPT of the dynamical activity, which provides an upper bound to the probability of its fluctuations to all orders; and (iii) an upper bound to the probability of the tails for the FPT of an arbitrary counting observable. For quantum Markov processes we rigorously prove: (iv) the quantum version of the LDP, and subsequent strong law of large numbers, for the FPTs of generic counts of quantum jumps; (v) a concentration bound for the the FPT of total number of quantum jumps, which provides an upper bound to the probability of its fluctuations to all orders, together with a similar bound for the sub-class of quantum reset processes which requires less strict irreducibility conditions; and (vi) a tail bound for the FPT of arbitrary counts. Our results allow to extend to FPTs the so-called “inverse thermodynamic uncertainty relations” that upper bound the size of fluctuations in time-integrated quantities. We illustrate our results with simple examples.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.